UZH-Logo

Maintenance Infos

Leptin in the canine uterus and placenta: possible implications in pregnancy


Balogh, Orsolya; Staub, Livia; Gram, Aykut; Boos, Alois; Kowalewski, Mariusz Pawel; Reichler, Iris M (2015). Leptin in the canine uterus and placenta: possible implications in pregnancy. Reproductive Biology and Endocrinology, 13:13.

Abstract

Background Leptin (Lep) is known for its involvement in the regulation of reproductive functions. It is important for uterine receptivity, implantation, placental growth and maternal energy homeostasis in several species, but Lep’s function in the pregnant dog has not been investigated. Methods Pregnant bitches were ovariohysterectomized at pre-implantation, post-implantation, mid-gestation and prepartum luteolysis. Two additional groups were treated with aglepristone in mid-gestation, and ovariohysterectomized 24 or 72 h later. Lep and leptin receptor (LepR) gene expression was detected by semi-quantitative real-time PCR in pre-implantation and inter-placental uterine sections (Ut) and in utero-placental compartments (Ut/Pl). Immunohistochemistry and in situ hybridization (ISH) were performed for Lep and LepR protein and mRNA localization. Parametric one-way ANOVA, paired t-test and Wilcoxon signed-rank test were used for statistical analysis. Results In the Ut/Pl, Lep expression was higher at post-implantation and prepartum luteolysis than at mid-gestation, while in the Ut, Lep mRNA levels did not change during pregnancy. LepR expression in the Ut/Pl was up-regulated at prepartum luteolysis compared to the earlier stages. In the Ut, highest LepR mRNA was found at pre- and post-implantation. LepR expression was down-regulated in the Ut/Pl compared to the Ut at post-implantation and at mid-gestation. Aglepristone treatment resulted in a decrease of Lep mRNA levels from 24 to 72 h in the Ut without concomitant changes in the Ut/Pl or in LepR levels. Lep and LepR immunoreactivities were strong in the luminal and glandular epithelium in the Ut with abundant LepR signals in the subepithelial stroma. In the Ut/Pl, fetal trophoblasts stained stronger for Lep and LepR than decidual cells, and signals for both proteins were also detected in the glandular chambers. The myometrium, blood vessel media, and sporadically also the endothelium stained for Lep and LepR. ISH showed similar signal distribution in the Ut and Ut/Pl. Conclusions Lep and LepR are differentially expressed in the canine uterus and placenta during pregnancy, and their presence in various cell types indicates paracrine/autocrine roles. The Lep signaling system may be one of the pathways involved in feto-maternal cross-talk, implantation and maintenance of pregnancy, and may have a regulatory role around parturition.

Abstract

Background Leptin (Lep) is known for its involvement in the regulation of reproductive functions. It is important for uterine receptivity, implantation, placental growth and maternal energy homeostasis in several species, but Lep’s function in the pregnant dog has not been investigated. Methods Pregnant bitches were ovariohysterectomized at pre-implantation, post-implantation, mid-gestation and prepartum luteolysis. Two additional groups were treated with aglepristone in mid-gestation, and ovariohysterectomized 24 or 72 h later. Lep and leptin receptor (LepR) gene expression was detected by semi-quantitative real-time PCR in pre-implantation and inter-placental uterine sections (Ut) and in utero-placental compartments (Ut/Pl). Immunohistochemistry and in situ hybridization (ISH) were performed for Lep and LepR protein and mRNA localization. Parametric one-way ANOVA, paired t-test and Wilcoxon signed-rank test were used for statistical analysis. Results In the Ut/Pl, Lep expression was higher at post-implantation and prepartum luteolysis than at mid-gestation, while in the Ut, Lep mRNA levels did not change during pregnancy. LepR expression in the Ut/Pl was up-regulated at prepartum luteolysis compared to the earlier stages. In the Ut, highest LepR mRNA was found at pre- and post-implantation. LepR expression was down-regulated in the Ut/Pl compared to the Ut at post-implantation and at mid-gestation. Aglepristone treatment resulted in a decrease of Lep mRNA levels from 24 to 72 h in the Ut without concomitant changes in the Ut/Pl or in LepR levels. Lep and LepR immunoreactivities were strong in the luminal and glandular epithelium in the Ut with abundant LepR signals in the subepithelial stroma. In the Ut/Pl, fetal trophoblasts stained stronger for Lep and LepR than decidual cells, and signals for both proteins were also detected in the glandular chambers. The myometrium, blood vessel media, and sporadically also the endothelium stained for Lep and LepR. ISH showed similar signal distribution in the Ut and Ut/Pl. Conclusions Lep and LepR are differentially expressed in the canine uterus and placenta during pregnancy, and their presence in various cell types indicates paracrine/autocrine roles. The Lep signaling system may be one of the pathways involved in feto-maternal cross-talk, implantation and maintenance of pregnancy, and may have a regulatory role around parturition.

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 11 Dec 2015
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Anatomy
05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2015
Deposited On:11 Dec 2015 14:32
Last Modified:05 Apr 2016 19:36
Publisher:BioMed Central
ISSN:1477-7827
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12958-015-0003-6
PubMed ID:25871422

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations