UZH-Logo

Maintenance Infos

Thionamides inhibit the transcription factor nuclear factor-kappaB by suppression of Rac1 and inhibitor of kappaB kinase alpha


Humar, M; Dohrmann, H; Stein, P; Andriopoulos, N; Goebel, U; Roesslein, M; Schmidt, R; Schwer, C I; Loop, T; Geiger, K K; Pahl, H L; Pannen, B H J (2008). Thionamides inhibit the transcription factor nuclear factor-kappaB by suppression of Rac1 and inhibitor of kappaB kinase alpha. Journal of Pharmacology and Experimental Therapeutics, 324(3):1037-1044.

Abstract

Thionamides, inhibitors of the thyroid peroxidase-mediated iodination, are clinically used in the treatment of hyperthyroidism. However, the use of antithyroid drugs is associated with immunomodulatory effects, and recent studies with thionamide-related heterocyclic thioderivates demonstrated direct anti-inflammatory and immunosuppressive properties. Using primary human T-lymphocytes, we show that the heterocyclic thionamides carbimazole and propylthiouracil inhibit synthesis of the proinflammatory cytokines tumor necrosis factor (TNF)alpha and interferon (IFN)gamma. In addition, DNA binding of nuclear factor (NF)-kappaB, a proinflammatory transcription factor that regulates both TNFalpha and IFNgamma synthesis, and NF-kappaB-dependent reporter gene expression were reduced. Abrogation of NF-kappaB activity was accompanied by reduced phosphorylation and proteolytic degradation of inhibitor of kappaB (IkappaB)alpha, the inhibitory subunit of the NF-kappaB complex. Carbimazole inhibited NF-kappaB via the small GTPase Rac-1, whereas propylthiouracil inhibited the phosphorylation of IkappaBalpha by its kinase inhibitor of kappaB kinase alpha. Methimazole had no effect on NF-kappaB induction, demonstrating that drug potency correlated with the chemical reactivity of the thionamide-associated sulfur group. Taken together, our data demonstrate that thioureylenes with a common, heterocyclic structure inhibit inflammation and immune function via the NF-kappaB pathway. Our results may explain the observed remission of proinflammatory diseases upon antithyroid therapy in hyperthyroid patients. The use of related thioureylenes may provide a new therapeutic basis for the development and application of anti-inflammatory compounds.

Abstract

Thionamides, inhibitors of the thyroid peroxidase-mediated iodination, are clinically used in the treatment of hyperthyroidism. However, the use of antithyroid drugs is associated with immunomodulatory effects, and recent studies with thionamide-related heterocyclic thioderivates demonstrated direct anti-inflammatory and immunosuppressive properties. Using primary human T-lymphocytes, we show that the heterocyclic thionamides carbimazole and propylthiouracil inhibit synthesis of the proinflammatory cytokines tumor necrosis factor (TNF)alpha and interferon (IFN)gamma. In addition, DNA binding of nuclear factor (NF)-kappaB, a proinflammatory transcription factor that regulates both TNFalpha and IFNgamma synthesis, and NF-kappaB-dependent reporter gene expression were reduced. Abrogation of NF-kappaB activity was accompanied by reduced phosphorylation and proteolytic degradation of inhibitor of kappaB (IkappaB)alpha, the inhibitory subunit of the NF-kappaB complex. Carbimazole inhibited NF-kappaB via the small GTPase Rac-1, whereas propylthiouracil inhibited the phosphorylation of IkappaBalpha by its kinase inhibitor of kappaB kinase alpha. Methimazole had no effect on NF-kappaB induction, demonstrating that drug potency correlated with the chemical reactivity of the thionamide-associated sulfur group. Taken together, our data demonstrate that thioureylenes with a common, heterocyclic structure inhibit inflammation and immune function via the NF-kappaB pathway. Our results may explain the observed remission of proinflammatory diseases upon antithyroid therapy in hyperthyroid patients. The use of related thioureylenes may provide a new therapeutic basis for the development and application of anti-inflammatory compounds.

Citations

12 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 28 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Anesthesiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:28 Jan 2009 10:13
Last Modified:05 Apr 2016 12:54
Publisher:American Society for Pharmacology and Experimental Therapeutics
ISSN:0022-3565
Publisher DOI:https://doi.org/10.1124/jpet.107.132407
PubMed ID:18055877

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations