UZH-Logo

Maintenance Infos

Rasch trees: a new method for detecting differential item functioning in the rasch model


Strobl, Carolin; Kopf, Julia; Zeileis, Achim (2015). Rasch trees: a new method for detecting differential item functioning in the rasch model. Psychometrika, 80(2):289-316.

Abstract

A variety of statistical methods have been suggested for detecting differential item functioning (DIF) in the Rasch model. Most of these methods are designed for the comparison of pre-specified focal and reference groups, such as males and females. Latent class approaches, on the other hand, allow the detection of previously unknown groups exhibiting DIF. However, this approach provides no straightforward interpretation of the groups with respect to person characteristics. Here, we propose a new method for DIF detection based on model-based recursive partitioning that can be considered as a compromise between those two extremes. With this approach it is possible to detect groups of subjects exhibiting DIF, which are not pre-specified, but result from combinations of observed covariates. These groups are directly interpretable and can thus help generate hypotheses about the psychological sources of DIF. The statistical background and construction of the new method are introduced by means of an instructive example, and extensive simulation studies are presented to support and illustrate the statistical properties of the method, which is then applied to empirical data from a general knowledge quiz. A software implementation of the method is freely available in the R system for statistical computing.

A variety of statistical methods have been suggested for detecting differential item functioning (DIF) in the Rasch model. Most of these methods are designed for the comparison of pre-specified focal and reference groups, such as males and females. Latent class approaches, on the other hand, allow the detection of previously unknown groups exhibiting DIF. However, this approach provides no straightforward interpretation of the groups with respect to person characteristics. Here, we propose a new method for DIF detection based on model-based recursive partitioning that can be considered as a compromise between those two extremes. With this approach it is possible to detect groups of subjects exhibiting DIF, which are not pre-specified, but result from combinations of observed covariates. These groups are directly interpretable and can thus help generate hypotheses about the psychological sources of DIF. The statistical background and construction of the new method are introduced by means of an instructive example, and extensive simulation studies are presented to support and illustrate the statistical properties of the method, which is then applied to empirical data from a general knowledge quiz. A software implementation of the method is freely available in the R system for statistical computing.

Citations

5 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:June 2015
Deposited On:15 Dec 2015 11:47
Last Modified:05 Apr 2016 19:39
Publisher:Springer
ISSN:0033-3123
Publisher DOI:https://doi.org/10.1007/s11336-013-9388-3

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations