UZH-Logo

Maintenance Infos

Subversion of cell-autonomous immunity and cell migration by Legionella pneumophila effectors


Simon, Sylvia; Hilbi, Hubert (2015). Subversion of cell-autonomous immunity and cell migration by Legionella pneumophila effectors. Frontiers in Immunology, 6:447.

Abstract

Bacteria trigger host defense and inflammatory processes, such as cytokine production, pyroptosis, and the chemotactic migration of immune cells toward the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called "effector" proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires' disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and as many as 300 different effector proteins to govern host-cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila.

Abstract

Bacteria trigger host defense and inflammatory processes, such as cytokine production, pyroptosis, and the chemotactic migration of immune cells toward the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called "effector" proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires' disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and as many as 300 different effector proteins to govern host-cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila.

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 21 Dec 2015
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2015
Deposited On:21 Dec 2015 14:30
Last Modified:05 Apr 2016 19:43
Publisher:Frontiers Research Foundation
ISSN:1664-3224
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fimmu.2015.00447
PubMed ID:26441958

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations