UZH-Logo

Maintenance Infos

Assessment of target detection limits in hyperspectral data


Gross, Wolfgang; Boehler, Jonas; Schilling, Hendrik; Middelmann, Wolfgang; Weyermann, Jörg; Wellig, Peter; Oechslin, Roland; Kneubühler, Mathias (2015). Assessment of target detection limits in hyperspectral data. In: SPIE Security+ Defence, Toulouse, France, 21 September 2015 - 24 September 2015, 96530J.

Abstract

Hyperspectral remote sensing data can be used for civil and military applications to detect and classify target objects that cannot be reliably separated using broadband sensors. The comparably low spatial resolution is compensated by the fact that small targets, even below image resolution, can still be classiffed. The goal of this paper is to determine the target size to spatial resolution ratio for successful classiffcation of different target and background materials. Airborne hyperspectral data is used to simulate data with known mixture ratios and to estimate the detection threshold for given false alarm rates. The data was collected in July 2014 over Greding, Germany, using airborne aisaEAGLE and aisaHAWK hyperspectral sensors. On the ground, various target materials were placed on natural background. The targets were four quadratic molton patches with an edge length of 7 meters in the colors black, white, grey and green. Also, two different types of polyethylene (camouage nets) with an edge length of approximately 5.5 meters were deployed. Synthetic data is generated from the original data using spectral mixtures. Target signatures are linearly combined with different background materials in specific ratios. The simulated mixtures are appended to the original data and the target areas are removed for evaluation. Commonly used classiffcation algorithms, e.g. Matched Filtering, Adaptive Cosine Estimator are used to determine the detection limit. Fixed false alarm rates are employed to find and analyze certain regions where false alarms usually occur first. A combination of 18 targets and 12 backgrounds is analyzed for three VNIR and two SWIR data sets of the same area.

Abstract

Hyperspectral remote sensing data can be used for civil and military applications to detect and classify target objects that cannot be reliably separated using broadband sensors. The comparably low spatial resolution is compensated by the fact that small targets, even below image resolution, can still be classiffed. The goal of this paper is to determine the target size to spatial resolution ratio for successful classiffcation of different target and background materials. Airborne hyperspectral data is used to simulate data with known mixture ratios and to estimate the detection threshold for given false alarm rates. The data was collected in July 2014 over Greding, Germany, using airborne aisaEAGLE and aisaHAWK hyperspectral sensors. On the ground, various target materials were placed on natural background. The targets were four quadratic molton patches with an edge length of 7 meters in the colors black, white, grey and green. Also, two different types of polyethylene (camouage nets) with an edge length of approximately 5.5 meters were deployed. Synthetic data is generated from the original data using spectral mixtures. Target signatures are linearly combined with different background materials in specific ratios. The simulated mixtures are appended to the original data and the target areas are removed for evaluation. Commonly used classiffcation algorithms, e.g. Matched Filtering, Adaptive Cosine Estimator are used to determine the detection limit. Fixed false alarm rates are employed to find and analyze certain regions where false alarms usually occur first. A combination of 18 targets and 12 backgrounds is analyzed for three VNIR and two SWIR data sets of the same area.

Altmetrics

Downloads

16 downloads since deposited on 23 Dec 2015
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Event End Date:24 September 2015
Deposited On:23 Dec 2015 10:14
Last Modified:05 Apr 2016 19:46
Publisher:SPIE - International Society for Optical Engineering
Series Name:Proceedings of SPIE
Number:9653
ISSN:0277-786X
Additional Information:Copyright 2015 Society of Photo-Optical Instrumentation Engineers. This paper was published in Proc. SPIE 9653, Target and Background Signatures, 965301 (November 14, 2015) and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Publisher DOI:https://doi.org/10.1117/12.2192197
Official URL:http://proceedings.spiedigitallibrary.org/volume.aspx?volumeid=17419

Download

[img]
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 515kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations