UZH-Logo

Maintenance Infos

Cerebral oxygenation in highlanders with and without high-altitude pulmonary hypertension


Furian, M; Latshang, T D; Aeschbacher, S S; Ulrich, S; Sooronbaev, T; Mirrakhimov, E M; Aldashev, A; Bloch, K E (2015). Cerebral oxygenation in highlanders with and without high-altitude pulmonary hypertension. Experimental Physiology, 100(8):905-914.

Abstract

New Findings:
1) What is the central question of this study?
Cerebral hypoxia impairs cognitive function and exercise performance and may result in brain damage. Residents at high altitude, in particular those with high-altitude pulmonary hypertension, are prone to hypoxaemia due to the exposure to reduced barometric pressure and impaired pulmonary gas exchange. Whether highlanders have a reduced cerebral oxygenation has not been studied.
2) What is the main finding and its importance?
We found that despite a reduced arterial oxygen saturation, healthy highlanders and even those with pulmonary hypertension have a similar cerebral oxygenation to healthy lowlanders, suggesting that compensatory mechanisms protect long-term residents at high altitude from cerebral hypoxia.

High-altitude pulmonary hypertension (HAPH), a chronic altitude-related illness, causes hypoxaemia and impaired exercise performance. We evaluated the hypothesis that haemodynamic limitation and hypoxaemia in patients with HAPH are associated with impaired cerebral tissue oxygenation (CTO) compared with healthy highlanders (HH) and lowlanders (LL). We studied 36 highlanders with HAPH and 54 HH at an altitude of 3250 m, and 34 LL at 760 m. Mean(±SD) pulmonary artery pressures were 34(±3), 22(±5) and 16(±4) mmHg, respectively (P < 0.05, all comparisons). The CTO was monitored by near-infrared spectroscopy along with pulse oximetry (peripheral arterial oxygen saturation, inline image) during quiet breathing of room air (RA) and oxygen for 20 min each, and during hyperventilation with RA and oxygen, respectively. In HAPH, HH and LL breathing RA, inline image was 88(±4), 92(±2) and 95(±2)%, respectively (P < 0.001, all comparisons), and CTO was similar in the three groups, at 68(±3), 68(±4) and 69(±4)%, respectively (n.s., all comparisons). Breathing oxygen increased inline image and CTO significantly more in HAPH than in HH and LL. Hyperventilation (RA) did not reduce CTO in HAPH but did in HH and LL; hyperventilation (oxygen) increased CTO in HAPH only. Highlanders with and without HAPH studied at 3250 m had a similar CTO to healthy lowlanders at 760 m even though highlanders were hypoxaemic. The physiological response to hyperoxia and hypocapnia assessed by cerebral near-infrared spectroscopy suggests that healthy highlanders and even highlanders with HAPH effectively maintain an adequate CTO. This adaptation may be of particular relevance because adequate cerebral oxygenation is essential for vital brain functions.

Abstract

New Findings:
1) What is the central question of this study?
Cerebral hypoxia impairs cognitive function and exercise performance and may result in brain damage. Residents at high altitude, in particular those with high-altitude pulmonary hypertension, are prone to hypoxaemia due to the exposure to reduced barometric pressure and impaired pulmonary gas exchange. Whether highlanders have a reduced cerebral oxygenation has not been studied.
2) What is the main finding and its importance?
We found that despite a reduced arterial oxygen saturation, healthy highlanders and even those with pulmonary hypertension have a similar cerebral oxygenation to healthy lowlanders, suggesting that compensatory mechanisms protect long-term residents at high altitude from cerebral hypoxia.

High-altitude pulmonary hypertension (HAPH), a chronic altitude-related illness, causes hypoxaemia and impaired exercise performance. We evaluated the hypothesis that haemodynamic limitation and hypoxaemia in patients with HAPH are associated with impaired cerebral tissue oxygenation (CTO) compared with healthy highlanders (HH) and lowlanders (LL). We studied 36 highlanders with HAPH and 54 HH at an altitude of 3250 m, and 34 LL at 760 m. Mean(±SD) pulmonary artery pressures were 34(±3), 22(±5) and 16(±4) mmHg, respectively (P < 0.05, all comparisons). The CTO was monitored by near-infrared spectroscopy along with pulse oximetry (peripheral arterial oxygen saturation, inline image) during quiet breathing of room air (RA) and oxygen for 20 min each, and during hyperventilation with RA and oxygen, respectively. In HAPH, HH and LL breathing RA, inline image was 88(±4), 92(±2) and 95(±2)%, respectively (P < 0.001, all comparisons), and CTO was similar in the three groups, at 68(±3), 68(±4) and 69(±4)%, respectively (n.s., all comparisons). Breathing oxygen increased inline image and CTO significantly more in HAPH than in HH and LL. Hyperventilation (RA) did not reduce CTO in HAPH but did in HH and LL; hyperventilation (oxygen) increased CTO in HAPH only. Highlanders with and without HAPH studied at 3250 m had a similar CTO to healthy lowlanders at 760 m even though highlanders were hypoxaemic. The physiological response to hyperoxia and hypocapnia assessed by cerebral near-infrared spectroscopy suggests that healthy highlanders and even highlanders with HAPH effectively maintain an adequate CTO. This adaptation may be of particular relevance because adequate cerebral oxygenation is essential for vital brain functions.

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Pneumology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2015
Deposited On:01 Feb 2016 10:39
Last Modified:05 Apr 2016 19:47
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0958-0670
Publisher DOI:https://doi.org/10.1113/EP085200
PubMed ID:26011291

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations