UZH-Logo

Maintenance Infos

A Synthetic Virus-Like Particle Streptococcal Vaccine Candidate Using B-Cell Epitopes from the Proline-Rich Region of Pneumococcal Surface Protein A


Robinson, J A; Tamborrini, M; Geib, N; Marrero-Nodarse, A; Jud, M; Hauser, J; Aho, C; Lamelas, A; Zuniga, A; Pluschke, G; Ghasparian, A (2015). A Synthetic Virus-Like Particle Streptococcal Vaccine Candidate Using B-Cell Epitopes from the Proline-Rich Region of Pneumococcal Surface Protein A. Vaccines, 3(4):850-874.

Abstract

Alternatives to the well-established capsular polysaccharide-based vaccines against Streptococcus pneumoniae that circumvent limitations arising from limited serotype coverage and the emergence of resistance due to capsule switching (serotype replacement) are being widely pursued. Much attention is now focused on the development of recombinant subunit vaccines based on highly conserved pneumococcal surface proteins and virulence factors. A further step might involve focusing the host humoral immune response onto protective protein epitopes using as immunogens structurally optimized epitope mimetics. One approach to deliver such epitope mimetics to the immune system is through the use of synthetic virus-like particles (SVLPs). SVLPs are made from synthetic coiled-coil lipopeptides that are designed to spontaneously self-assemble into 20-30 nm diameter nanoparticles in aqueous buffer. Multivalent display of epitope mimetics on the surface of SVLPs generates highly immunogenic nanoparticles that elicit strong epitope-specific humoral immune responses without the need for external adjuvants. Here, we set out to demonstrate that this approach can yield vaccine candidates able to elicit a protective immune response, using epitopes derived from the proline-rich region of pneumococcal surface protein A (PspA). These streptococcal SVLP-based vaccine candidates are shown to elicit strong humoral immune responses in mice. Following active immunization and challenge with lethal doses of streptococcus, SVLP-based immunogens are able to elicit significant protection in mice. Furthermore, a mimetic-specific monoclonal antibody is shown to mediate partial protection upon passive immunization. The results show that SVLPs combined with synthetic epitope mimetics may have potential for the development of an effective vaccine against Streptococcus pneumoniae.

Alternatives to the well-established capsular polysaccharide-based vaccines against Streptococcus pneumoniae that circumvent limitations arising from limited serotype coverage and the emergence of resistance due to capsule switching (serotype replacement) are being widely pursued. Much attention is now focused on the development of recombinant subunit vaccines based on highly conserved pneumococcal surface proteins and virulence factors. A further step might involve focusing the host humoral immune response onto protective protein epitopes using as immunogens structurally optimized epitope mimetics. One approach to deliver such epitope mimetics to the immune system is through the use of synthetic virus-like particles (SVLPs). SVLPs are made from synthetic coiled-coil lipopeptides that are designed to spontaneously self-assemble into 20-30 nm diameter nanoparticles in aqueous buffer. Multivalent display of epitope mimetics on the surface of SVLPs generates highly immunogenic nanoparticles that elicit strong epitope-specific humoral immune responses without the need for external adjuvants. Here, we set out to demonstrate that this approach can yield vaccine candidates able to elicit a protective immune response, using epitopes derived from the proline-rich region of pneumococcal surface protein A (PspA). These streptococcal SVLP-based vaccine candidates are shown to elicit strong humoral immune responses in mice. Following active immunization and challenge with lethal doses of streptococcus, SVLP-based immunogens are able to elicit significant protection in mice. Furthermore, a mimetic-specific monoclonal antibody is shown to mediate partial protection upon passive immunization. The results show that SVLPs combined with synthetic epitope mimetics may have potential for the development of an effective vaccine against Streptococcus pneumoniae.

Altmetrics

Downloads

8 downloads since deposited on 05 Jan 2016
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:October 2015
Deposited On:05 Jan 2016 16:27
Last Modified:05 Apr 2016 19:49
Publisher:MDPI Publishing
ISSN:2076-393X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/vaccines3040850
Official URL:http://www.mdpi.com/2076-393X/3/4/850
PubMed ID:26501327
Permanent URL: https://doi.org/10.5167/uzh-118011

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 914kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations