UZH-Logo

Maintenance Infos

Targeting the ROR1 and ROR2 receptors in epithelial ovarian cancer inhibits cell migration and invasion


Henry, Claire; Llamosas, Estelle; Knipprath-Meszaros, Alexandra; Schoetzau, Andreas; Obermann, Ellen; Fuenfschilling, Maya; Caduff, Rosemarie; Fink, Daniel; Hacker, Neville; Ward, Robyn; Heinzelmann-Schwarz, Viola; Ford, Caroline (2015). Targeting the ROR1 and ROR2 receptors in epithelial ovarian cancer inhibits cell migration and invasion. OncoTarget, 6(37):40310-40326.

Abstract

AIM: In recent years, the Wnt signalling pathway has been implicated in epithelial ovarian cancer and its members have potential as diagnostic, prognostic and therapeutic targets. Here we investigated the role of two Wnt receptor tyrosine kinases (RTKs), ROR1 and ROR2, and their putative ligand, Wnt5a, in ovarian cancer.
METHODS: Immunohistochemistry for ROR2 was performed in a large patient cohort, including benign controls, borderline tumours and epithelial ovarian cancer. In addition, siRNA was used to silence ROR1, ROR2 and Wnt5a individually, and together, in two ovarian cancer cell lines, and the effects on cell proliferation, adhesion, migration and invasion were measured.
RESULTS: ROR2 expression is significantly increased in ovarian cancer patients compared to patients with benign disease. In vitro assays showed that silencing either receptor inhibits ovarian cancer cell migration and invasion, and concurrently silencing both receptors has an even stronger inhibitory effect on proliferation, migration and invasion.
CONCLUSIONS: ROR2 expression is increased in epithelial ovarian cancer, and silencing ROR2 and its sister receptor ROR1 has a strong inhibitory effect on the ability of ovarian cancer cells to proliferate, migrate and invade through an extracellular matrix.

Abstract

AIM: In recent years, the Wnt signalling pathway has been implicated in epithelial ovarian cancer and its members have potential as diagnostic, prognostic and therapeutic targets. Here we investigated the role of two Wnt receptor tyrosine kinases (RTKs), ROR1 and ROR2, and their putative ligand, Wnt5a, in ovarian cancer.
METHODS: Immunohistochemistry for ROR2 was performed in a large patient cohort, including benign controls, borderline tumours and epithelial ovarian cancer. In addition, siRNA was used to silence ROR1, ROR2 and Wnt5a individually, and together, in two ovarian cancer cell lines, and the effects on cell proliferation, adhesion, migration and invasion were measured.
RESULTS: ROR2 expression is significantly increased in ovarian cancer patients compared to patients with benign disease. In vitro assays showed that silencing either receptor inhibits ovarian cancer cell migration and invasion, and concurrently silencing both receptors has an even stronger inhibitory effect on proliferation, migration and invasion.
CONCLUSIONS: ROR2 expression is increased in epithelial ovarian cancer, and silencing ROR2 and its sister receptor ROR1 has a strong inhibitory effect on the ability of ovarian cancer cells to proliferate, migrate and invade through an extracellular matrix.

Citations

1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 12 Jan 2016
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Surgical Pathology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Gynecology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:24 November 2015
Deposited On:12 Jan 2016 09:42
Last Modified:22 May 2016 02:27
Publisher:Impact Journals, LLC
ISSN:1949-2553
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.18632/oncotarget.5643
PubMed ID:26515598

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 7MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations