UZH-Logo

Maintenance Infos

Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts


Schumann, Paul; Kampmann, Andreas; Sauer, Gisa; Lindhorst, Daniel; von See, Constantin; Stoetzer, Marcus; Tavassol, Frank; Gellrich, Nils-Claudius; Rücker, Martin; Essig, Harald (2016). Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts. Biochemical Engineering Journal, 105(Part A):230-241.

Abstract

There is an urgent critical need for the development of clinically relevant tissue-engineered large bone substitutes that can promote early vascularization after transplantation. To promote rapid blood vessel growth in the engineered tissue, we preincubated aortic fragments, as well as, co-cultures of aortic fragments and osteoblast-like cells in matrigel-filled PLGA scaffolds before implantation into the dorsal skinfold chambers of balb/c mice. Despite an acceptable and low inflammatory response, preincubated aortic fragments accelerate early angiogenesis of tissue-engineered constructs; the angiogenesis was found to occur faster than that observed in previous studies. Thus, the time-period for achieving a denser microvascular network could be reduced to half. In addition, co-culture with osteoblasts enhances this angiogenic effect significantly (against preincubated aortic fragments alone). During the preincubation period, aortic fragments begin to form a network of vessel-like structures additionally supported by osteoblast-like cells. After transplantation, further development of a dense microvasculature continues rapidly. Therefore, preincubation of aortic fragments, especially in co-culture with osteoblast-like cells, in 3D extracellular matrices supports the rapid vascularization of tissue-engineered constructs. This method is a promising approach to establish a dense microvascular network in these constructs.

Abstract

There is an urgent critical need for the development of clinically relevant tissue-engineered large bone substitutes that can promote early vascularization after transplantation. To promote rapid blood vessel growth in the engineered tissue, we preincubated aortic fragments, as well as, co-cultures of aortic fragments and osteoblast-like cells in matrigel-filled PLGA scaffolds before implantation into the dorsal skinfold chambers of balb/c mice. Despite an acceptable and low inflammatory response, preincubated aortic fragments accelerate early angiogenesis of tissue-engineered constructs; the angiogenesis was found to occur faster than that observed in previous studies. Thus, the time-period for achieving a denser microvascular network could be reduced to half. In addition, co-culture with osteoblasts enhances this angiogenic effect significantly (against preincubated aortic fragments alone). During the preincubation period, aortic fragments begin to form a network of vessel-like structures additionally supported by osteoblast-like cells. After transplantation, further development of a dense microvasculature continues rapidly. Therefore, preincubation of aortic fragments, especially in co-culture with osteoblast-like cells, in 3D extracellular matrices supports the rapid vascularization of tissue-engineered constructs. This method is a promising approach to establish a dense microvascular network in these constructs.

Altmetrics

Downloads

1 download since deposited on 13 Jan 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Cranio-Maxillofacial Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:13 Jan 2016 09:35
Last Modified:05 Apr 2016 19:52
Publisher:Elsevier
ISSN:1369-703X
Publisher DOI:https://doi.org/10.1016/j.bej.2015.09.025

Download

[img]
Filetype: PDF - Registered users only
Size: 154kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations