UZH-Logo

Maintenance Infos

Homogeneous Photochemical Water Oxidation with Cobalt Chloride in Acidic Media


Liu, Hongfei; Schilling, Mauro; Yulikov, Maxim; Luber, Sandra; Patzke, Greta R (2015). Homogeneous Photochemical Water Oxidation with Cobalt Chloride in Acidic Media. ACS Catalysis, 5(9):4994-4999.

Abstract

The precise mechanisms of four-electron-transfer water oxidation processes remain to be further understood. Oxide-based precipitation from molecular catalysts as a frequent observation during water oxidation has raised extensive debates on the differentiation between homogeneous and heterogeneous catalysis. Although soluble cobalt salts are known to be active in water oxidation, CoOx species formed in situ were generally considered to be the true catalyst. Here we report on the possibility homogeneous water oxidation with cobalt chloride in acidic conditions, which prevent CoOx precipitation. Interestingly, both the buffer media and counteranions were found to significantly influence the oxygen evolution activity, and their roles in the water oxidation process were analyzed with various techniques. This study sheds new light on Co2+ ions in key transformation processes of homogeneous water oxidation catalysts.

The precise mechanisms of four-electron-transfer water oxidation processes remain to be further understood. Oxide-based precipitation from molecular catalysts as a frequent observation during water oxidation has raised extensive debates on the differentiation between homogeneous and heterogeneous catalysis. Although soluble cobalt salts are known to be active in water oxidation, CoOx species formed in situ were generally considered to be the true catalyst. Here we report on the possibility homogeneous water oxidation with cobalt chloride in acidic conditions, which prevent CoOx precipitation. Interestingly, both the buffer media and counteranions were found to significantly influence the oxygen evolution activity, and their roles in the water oxidation process were analyzed with various techniques. This study sheds new light on Co2+ ions in key transformation processes of homogeneous water oxidation catalysts.

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
08 University Research Priority Programs > Solar Light to Chemical Energy Conversion
Dewey Decimal Classification:540 Chemistry
Language:English
Date:4 September 2015
Deposited On:13 Jan 2016 16:00
Last Modified:05 Apr 2016 19:53
Publisher:American Chemical Society (ACS)
ISSN:2155-5435
Publisher DOI:https://doi.org/10.1021/acscatal.5b01101

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations