UZH-Logo

Maintenance Infos

Giant and complex aneurysms treatment with preservation of flow via bypass technique


Thines, L; Proust, F; Marinho, P; Durand, A; van der Zwan, A; Regli, L; Lejeune, J-P (2016). Giant and complex aneurysms treatment with preservation of flow via bypass technique. Neuro-Chirurgie, 62(1):1-13.

Abstract

Due to their anatomical characteristics and the complexity of the procedures required to obtain their complete occlusion, the treatment of giant intracranial aneurysms is a real challenge. Direct reconstructive strategies, whether by interventional neuroradiology (coils, stents) or microsurgical (clipping) means, are not always applicable and, in patients that would not tolerate parent or collateral artery sacrifice, the adjunction of a revascularization procedure using a bypass technique might be necessary. Cerebral arterial bypasses can be classified according to their function (3 types: flow replacement, flow reversal or protective), the branching mode of the graft used (3 types: pedicled, interpositional or in situ), the sites of anastomosis (2 types: extracranial-intracranial or intracranial-intracranial) and the class of flow they are supposed to provide (3 types: low-, intermediate- or high-flow). In this article, the authors review the different aspects in the management of patients with a giant intracranial aneurysm using a bypass: preoperative work-up, types of bypass and indications, surgical techniques and results.

Abstract

Due to their anatomical characteristics and the complexity of the procedures required to obtain their complete occlusion, the treatment of giant intracranial aneurysms is a real challenge. Direct reconstructive strategies, whether by interventional neuroradiology (coils, stents) or microsurgical (clipping) means, are not always applicable and, in patients that would not tolerate parent or collateral artery sacrifice, the adjunction of a revascularization procedure using a bypass technique might be necessary. Cerebral arterial bypasses can be classified according to their function (3 types: flow replacement, flow reversal or protective), the branching mode of the graft used (3 types: pedicled, interpositional or in situ), the sites of anastomosis (2 types: extracranial-intracranial or intracranial-intracranial) and the class of flow they are supposed to provide (3 types: low-, intermediate- or high-flow). In this article, the authors review the different aspects in the management of patients with a giant intracranial aneurysm using a bypass: preoperative work-up, types of bypass and indications, surgical techniques and results.

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:15 Feb 2016 14:02
Last Modified:05 Apr 2016 19:56
Publisher:Elsevier
ISSN:0028-3770
Publisher DOI:https://doi.org/10.1016/j.neuchi.2015.03.008
PubMed ID:26072226

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations