UZH-Logo

Maintenance Infos

On the accuracy of viscous and turbulent loss quantification in stenotic aortic flow using phase-contrast MRI


Binter, Christian; Gülan, Utku; Holzner, Markus; Kozerke, Sebastian (2016). On the accuracy of viscous and turbulent loss quantification in stenotic aortic flow using phase-contrast MRI. Magnetic Resonance in Medicine, 76(1):191-196.

Abstract

PURPOSE: To investigate the limits of phase contrast MRI (PC-MRI)-based measurements of viscous losses and turbulent kinetic energy (TKE) pertaining to spatial resolution, signal-to-noise ratio (SNR), and non-Gaussian intravoxel velocity distributions.
THEORY AND METHODS: High-resolution particle tracking velocimetry data obtained in a realistic aortic phantom with stenotic flow were used to simulate PC-MRI measurements at different resolutions and noise levels. Laminar viscous losses were computed using the spatial gradients of the mean velocity vector field, and TKE levels were derived based on the intravoxel phase dispersion of flow-sensitized PC-MRI measurements.
RESULTS: Increasing the voxel size from 0.625 to 2.5 mm resulted in an underestimation of viscous losses of up to 83%, whereas total TKE values showed errors of <15% and reduced sensitivity to voxel size. Relative errors in viscous loss quantification were found to be less dependent on noise levels when compared with TKE values. In general, a SNR of 20-30 is required for both methods.
CONCLUSION: At spatial resolutions feasible in clinical three-dimensional PC-MRI measurements, viscous losses of stenotic flows are significantly underestimated, whereas TKE shows smaller errors and reduced sensitivity to spatial resolution. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.

Abstract

PURPOSE: To investigate the limits of phase contrast MRI (PC-MRI)-based measurements of viscous losses and turbulent kinetic energy (TKE) pertaining to spatial resolution, signal-to-noise ratio (SNR), and non-Gaussian intravoxel velocity distributions.
THEORY AND METHODS: High-resolution particle tracking velocimetry data obtained in a realistic aortic phantom with stenotic flow were used to simulate PC-MRI measurements at different resolutions and noise levels. Laminar viscous losses were computed using the spatial gradients of the mean velocity vector field, and TKE levels were derived based on the intravoxel phase dispersion of flow-sensitized PC-MRI measurements.
RESULTS: Increasing the voxel size from 0.625 to 2.5 mm resulted in an underestimation of viscous losses of up to 83%, whereas total TKE values showed errors of <15% and reduced sensitivity to voxel size. Relative errors in viscous loss quantification were found to be less dependent on noise levels when compared with TKE values. In general, a SNR of 20-30 is required for both methods.
CONCLUSION: At spatial resolutions feasible in clinical three-dimensional PC-MRI measurements, viscous losses of stenotic flows are significantly underestimated, whereas TKE shows smaller errors and reduced sensitivity to spatial resolution. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.

Altmetrics

Downloads

0 downloads since deposited on 03 Feb 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2016
Deposited On:03 Feb 2016 15:07
Last Modified:16 Jun 2016 01:02
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0740-3194
Publisher DOI:https://doi.org/10.1002/mrm.25862
PubMed ID:26258402

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations