UZH-Logo

Maintenance Infos

Decoding potential effects of climate and vegetation change on mineral weathering in alpine soils: An experimental study in the Wind River Range (Wyoming, USA)


Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus (2015). Decoding potential effects of climate and vegetation change on mineral weathering in alpine soils: An experimental study in the Wind River Range (Wyoming, USA). Geoderma, 255-256:12-26.

Abstract

Climate change and a related increase in temperature, particularly in alpine areas, force both flora and fauna to adapt to the new conditions. These changes should in turn affect soil formation processes. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected vegetation and climate changes. To achieve this, a field empirical approach investigating an altitudinal sequence was used in combination with laboratory weathering experiments simulating several scenarios. The study sites are located in Sinks Canyon and Stough Basin of the Wind River Range, Wyoming, USA. The following sites (from moist to dry with increasing temperature along the sequence) were investigated: 10 soil profiles (Typic Haplocryoll) in a tundra ecotone, 10 soil profiles (Ustic Haplocryoll) in a pine-fir forest and 20 soil profiles (Ustic Argicryoll) in sagebrush. All soils developed on granitoid moraines. Soil mineralogy was analysed using cathodoluminescence and X-ray diffraction. This revealed that biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions promoted weathering of primary minerals. Furthermore, the soils of the tundra and forest zone exhibited a higher acidity and more organic carbon.
In a series of wet laboratory batch experiments, materials from topsoils (A horizons) and subsoils (B horizons) in each ecotone were examined alone or in combination with other samples. In a first step, aqueous extracts of the topsoil samples were generated in batch reactors and analysed for the main ions. In a second and a third step the topsoil extracts were reacted with the subsoil samples of the same ecotone, and with the subsoil samples of the ecotones at higher altitude. The total duration of these batch experiments was 1800 h, and the solutes were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude the total concentrations of Ca, Mg and K in the aqueous extracts decreased, the relative ionic contribution from K decreased, while the ionic contribution from Ca increased.
Climate change (warming, changed precipitation) potentially will reduce weathering intensity, soil acidity and the content of organic carbon. An altitudinal shift in vegetation due to climate change seems to affect the ionic composition of the soil solution. In the case of a shift from forest to sagebrush and tundra to forest or sagebrush, the relative contribution from K would increase at the expense of Ca. We hypothesise that K will play an important role in future biogeochemical cycles under the assumptions of climate warming and subsequent vegetation shifts to higher altitudes.

Abstract

Climate change and a related increase in temperature, particularly in alpine areas, force both flora and fauna to adapt to the new conditions. These changes should in turn affect soil formation processes. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected vegetation and climate changes. To achieve this, a field empirical approach investigating an altitudinal sequence was used in combination with laboratory weathering experiments simulating several scenarios. The study sites are located in Sinks Canyon and Stough Basin of the Wind River Range, Wyoming, USA. The following sites (from moist to dry with increasing temperature along the sequence) were investigated: 10 soil profiles (Typic Haplocryoll) in a tundra ecotone, 10 soil profiles (Ustic Haplocryoll) in a pine-fir forest and 20 soil profiles (Ustic Argicryoll) in sagebrush. All soils developed on granitoid moraines. Soil mineralogy was analysed using cathodoluminescence and X-ray diffraction. This revealed that biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions promoted weathering of primary minerals. Furthermore, the soils of the tundra and forest zone exhibited a higher acidity and more organic carbon.
In a series of wet laboratory batch experiments, materials from topsoils (A horizons) and subsoils (B horizons) in each ecotone were examined alone or in combination with other samples. In a first step, aqueous extracts of the topsoil samples were generated in batch reactors and analysed for the main ions. In a second and a third step the topsoil extracts were reacted with the subsoil samples of the same ecotone, and with the subsoil samples of the ecotones at higher altitude. The total duration of these batch experiments was 1800 h, and the solutes were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude the total concentrations of Ca, Mg and K in the aqueous extracts decreased, the relative ionic contribution from K decreased, while the ionic contribution from Ca increased.
Climate change (warming, changed precipitation) potentially will reduce weathering intensity, soil acidity and the content of organic carbon. An altitudinal shift in vegetation due to climate change seems to affect the ionic composition of the soil solution. In the case of a shift from forest to sagebrush and tundra to forest or sagebrush, the relative contribution from K would increase at the expense of Ca. We hypothesise that K will play an important role in future biogeochemical cycles under the assumptions of climate warming and subsequent vegetation shifts to higher altitudes.

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

8 downloads since deposited on 21 Jan 2016
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:21 Jan 2016 13:09
Last Modified:05 Apr 2016 19:59
Publisher:Elsevier
ISSN:0016-7061
Publisher DOI:https://doi.org/10.1016/j.geoderma.2015.04.014

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 2MB
View at publisher
[img]
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 1MB
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations