UZH-Logo

Maintenance Infos

Stimuli-responsive lipidic cubic phase: triggered release and sequestration of guest molecules


Rahanyan-Kägi, Nelli; Aleandri, Simone; Speziale, Chiara; Mezzenga, Raffaele; Landau, Ehud (2014). Stimuli-responsive lipidic cubic phase: triggered release and sequestration of guest molecules. Chemistry - A European Journal, 21(5):1873-1877.

Abstract

New stimuli-responsive nanomaterials, made up of host–guest lipidic cubic phases (LCPs) are presented. These biocompatible, stable, transparent and water-insoluble LCPs are composed of monoolein (MO) as a neutral host, and small amounts of one of three judiciously designed and synthesized designer lipids as guest that preserve the structure and stability of LCPs, but render them specific functionalities. Efficient pH- and light-induced binding, release and sequestration of hydrophilic dyes are demonstrated. Significantly, these processes can be performed sequentially, thereby achieving both temporal and dosage control, opening up the possibility of using such LCPs as effective carriers to be used in drug delivery applications. Specifically, because of the inherent optical transparency and molecular isotropy of LCPs they can be envisaged as light-induced drug carriers in ophthalmology. The results presented here demonstrate the potential of molecular design in creating new functional materials with predicted operating mode.

Abstract

New stimuli-responsive nanomaterials, made up of host–guest lipidic cubic phases (LCPs) are presented. These biocompatible, stable, transparent and water-insoluble LCPs are composed of monoolein (MO) as a neutral host, and small amounts of one of three judiciously designed and synthesized designer lipids as guest that preserve the structure and stability of LCPs, but render them specific functionalities. Efficient pH- and light-induced binding, release and sequestration of hydrophilic dyes are demonstrated. Significantly, these processes can be performed sequentially, thereby achieving both temporal and dosage control, opening up the possibility of using such LCPs as effective carriers to be used in drug delivery applications. Specifically, because of the inherent optical transparency and molecular isotropy of LCPs they can be envisaged as light-induced drug carriers in ophthalmology. The results presented here demonstrate the potential of molecular design in creating new functional materials with predicted operating mode.

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2014
Deposited On:26 Jan 2016 11:38
Last Modified:05 Apr 2016 19:59
Publisher:Wiley-VCH Verlag Berlin
ISSN:0947-6539
Publisher DOI:https://doi.org/10.1002/chem.201405580

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations