UZH-Logo

Maintenance Infos

Evolutionary significance of seed structure in Alpinioideae (Zingiberaceae)


Benedict, John C; Smith, Selena Y; Collinson, Margaret E; Leong-Škorničková, Jana; Specht, Chelsea D; Fife, Julie L; Marone, Federica; Xiao, Xianghui; Parkinson, Dilworth Y (2015). Evolutionary significance of seed structure in Alpinioideae (Zingiberaceae). Botanical Journal of the Linnean Society, 178(3):441-466.

Abstract

Alpinioideae is the largest of the four subfamilies of Zingiberaceae and is widely distributed throughout the New and Old World tropics. Recent molecular studies have shown that, although Alpinioideae is a strongly supported monophyletic subfamily with two distinct tribes (Alpinieae and Riedelieae), large genera, such as Alpinia and Amomum, are polyphyletic and are in need of revision. Alpinia and Amomum have been shown to form seven and three distinct clades, respectively, but, for many of these clades, traditional vegetative and floral synapomorphies have not been found. A broad survey of seeds in Alpinioideae using light microscopy and synchrotron-based X-ray tomographic microscopy has shown that many clades have distinctive seed structures that serve as distinctive apomorphies. Tribes Riedelieae and Alpinieae can be distinguished on the basis of operculum structure, with the exception of three taxa analysed. The most significant seed characters were found to be various modifications of the micropylar and chalazal ends, the cell shape of the endotesta and exotesta, and the location of an endotestal gap. A chalazal chamber and hilar rim are reported for the first time in Zingiberaceae. In addition to characterizing clades of extant lineages, these data offer insights into the taxonomic placement of many fossil zingiberalean seeds that are critical to understanding the origin and evolution of Alpinioideae and Zingiberales as a whole. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 441–466.

Abstract

Alpinioideae is the largest of the four subfamilies of Zingiberaceae and is widely distributed throughout the New and Old World tropics. Recent molecular studies have shown that, although Alpinioideae is a strongly supported monophyletic subfamily with two distinct tribes (Alpinieae and Riedelieae), large genera, such as Alpinia and Amomum, are polyphyletic and are in need of revision. Alpinia and Amomum have been shown to form seven and three distinct clades, respectively, but, for many of these clades, traditional vegetative and floral synapomorphies have not been found. A broad survey of seeds in Alpinioideae using light microscopy and synchrotron-based X-ray tomographic microscopy has shown that many clades have distinctive seed structures that serve as distinctive apomorphies. Tribes Riedelieae and Alpinieae can be distinguished on the basis of operculum structure, with the exception of three taxa analysed. The most significant seed characters were found to be various modifications of the micropylar and chalazal ends, the cell shape of the endotesta and exotesta, and the location of an endotestal gap. A chalazal chamber and hilar rim are reported for the first time in Zingiberaceae. In addition to characterizing clades of extant lineages, these data offer insights into the taxonomic placement of many fossil zingiberalean seeds that are critical to understanding the origin and evolution of Alpinioideae and Zingiberales as a whole. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 441–466.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:08 Feb 2016 14:22
Last Modified:05 Apr 2016 20:00
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0024-4074
Publisher DOI:https://doi.org/10.1111/boj.12257

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations