UZH-Logo

Maintenance Infos

Dynamic Operation of HT-PEFC: in-operando imaging of phosphoric acid profiles and (re)distribution


Eberhardt, S H; Toulec, M; Marone, F; Stampanoni, M; Buchi, F N; Schmidt, T J (2015). Dynamic Operation of HT-PEFC: in-operando imaging of phosphoric acid profiles and (re)distribution. Journal of the Electrochemical Society, 162(3):F310-F316.

Abstract

Synchrotron based X-ray tomographic microscopy (XTM) is used for imaging and quantifying the redistribution of phosphoric acid (PA) in high temperature polymer electrolyte fuel cells (HT-PEFC) in-operando. The main focus of this work is the redistribution of phosphoric acid under dynamic load conditions. Therefore, two different load cycling protocols were applied and the transient redistribution within the fuel cell components was imaged. XTM, for the first time, revealed that the examined PBI based membrane system exhibits extensive electrolyte migration from cathode to anode under high current density operation. PA flooding of anode gas diffusion layer (GDL) and flow field channels occurred. Implications for technical applications and fuel cell degradation are discussed. Quantification of the migrated electrolyte is made by correlating in-operando grayscale values to ex-situ reference samples.

Abstract

Synchrotron based X-ray tomographic microscopy (XTM) is used for imaging and quantifying the redistribution of phosphoric acid (PA) in high temperature polymer electrolyte fuel cells (HT-PEFC) in-operando. The main focus of this work is the redistribution of phosphoric acid under dynamic load conditions. Therefore, two different load cycling protocols were applied and the transient redistribution within the fuel cell components was imaged. XTM, for the first time, revealed that the examined PBI based membrane system exhibits extensive electrolyte migration from cathode to anode under high current density operation. PA flooding of anode gas diffusion layer (GDL) and flow field channels occurred. Implications for technical applications and fuel cell degradation are discussed. Quantification of the migrated electrolyte is made by correlating in-operando grayscale values to ex-situ reference samples.

Citations

10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 09 Feb 2016
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:09 Feb 2016 11:24
Last Modified:05 Apr 2016 20:00
Publisher:Electrochemical Society, Inc.
ISSN:0013-4651
Publisher DOI:https://doi.org/10.1149/2.0751503jes

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations