UZH-Logo

Maintenance Infos

Evidence for the widespread production of DSF family signal molecules by members of the genusBurkholderiaby the aid of novel biosensors


Suppiger, Angela; Aguilar, Claudio; Eberl, Leo (2016). Evidence for the widespread production of DSF family signal molecules by members of the genusBurkholderiaby the aid of novel biosensors. Environmental Microbiology Reports, 8(1):38-44.

Abstract

Many bacteria employ cis-2-unsaturated fatty acids, referred to as DSF (diffusible signal factor) family signals, to communicate with each other. Such systems have been shown to control biofilm formation, motility, production of hydrolytic enzymes and expression of virulence factors. We report the construction of novel biosensors on the basis of components of the Burkholderia-DSF (BDSF) dependent circuitry of Burkholderia cenocepacia H111 and evaluated their utility for detecting the production of DSF family signal molecules. We show that a luxAB-based biosensor responds to nM levels of synthetic BDSF and is suitable to detect a wide range of cis-2 fatty acid molecules. Using this biosensor we show that the production of DSF family molecules is widespread among members of the B. cepacia complex and demonstrate for the first time that DSF-based molecules are also produced by plant-associated Burkholderia species.

Abstract

Many bacteria employ cis-2-unsaturated fatty acids, referred to as DSF (diffusible signal factor) family signals, to communicate with each other. Such systems have been shown to control biofilm formation, motility, production of hydrolytic enzymes and expression of virulence factors. We report the construction of novel biosensors on the basis of components of the Burkholderia-DSF (BDSF) dependent circuitry of Burkholderia cenocepacia H111 and evaluated their utility for detecting the production of DSF family signal molecules. We show that a luxAB-based biosensor responds to nM levels of synthetic BDSF and is suitable to detect a wide range of cis-2 fatty acid molecules. Using this biosensor we show that the production of DSF family molecules is widespread among members of the B. cepacia complex and demonstrate for the first time that DSF-based molecules are also produced by plant-associated Burkholderia species.

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2016
Deposited On:08 Feb 2016 15:06
Last Modified:05 Apr 2016 20:00
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1758-2229
Publisher DOI:https://doi.org/10.1111/1758-2229.12348

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations