UZH-Logo

Maintenance Infos

Master and servant: Regulation of auxin transporters by FKBPs and cyclophilins


Geisler, Markus; Bailly, Aurélien; Ivanchenko, Maria (2016). Master and servant: Regulation of auxin transporters by FKBPs and cyclophilins. Plant Science, 245:1-10.

Abstract

Plant development and architecture are greatly influenced by the polar distribution of the essential hormone auxin. The directional influx and efflux of auxin from plant cells depends primarily on AUX1/LAX, PIN, and ABCB/PGP/MDR families of auxin transport proteins. The functional analysis of these proteins has progressed rapidly within the last decade thanks to the establishment of heterologous auxin transport systems. Heterologous co-expression allowed also for the testing of protein–protein interactions involved in the regulation of transporters and identified relationships with members of the FK506-Binding Protein (FKBP) and cyclophilin protein families, which are best known in non-plant systems as cellular receptors for the immunosuppressant drugs, FK506 and cyclosporin A, respectively. Current evidence that such interactions affect membrane trafficking, and potentially the activity of auxin transporters is reviewed. We also propose that FKBPs andcyclophilins might integrate the action of auxin transport inhibitors, such as NPA, on members of the ABCB and PIN family, respectively. Finally, we outline open questions that might be useful for further elucidation of the role of immunophilins as regulators (servants) of auxin transporters (masters).

Abstract

Plant development and architecture are greatly influenced by the polar distribution of the essential hormone auxin. The directional influx and efflux of auxin from plant cells depends primarily on AUX1/LAX, PIN, and ABCB/PGP/MDR families of auxin transport proteins. The functional analysis of these proteins has progressed rapidly within the last decade thanks to the establishment of heterologous auxin transport systems. Heterologous co-expression allowed also for the testing of protein–protein interactions involved in the regulation of transporters and identified relationships with members of the FK506-Binding Protein (FKBP) and cyclophilin protein families, which are best known in non-plant systems as cellular receptors for the immunosuppressant drugs, FK506 and cyclosporin A, respectively. Current evidence that such interactions affect membrane trafficking, and potentially the activity of auxin transporters is reviewed. We also propose that FKBPs andcyclophilins might integrate the action of auxin transport inhibitors, such as NPA, on members of the ABCB and PIN family, respectively. Finally, we outline open questions that might be useful for further elucidation of the role of immunophilins as regulators (servants) of auxin transporters (masters).

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2016
Deposited On:08 Feb 2016 15:18
Last Modified:05 Apr 2016 20:00
Publisher:Elsevier Ireland Ltd.
ISSN:0168-9452
Publisher DOI:https://doi.org/10.1016/j.plantsci.2015.12.004

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations