UZH-Logo

Maintenance Infos

Rice PCR1 influences grain weight and Zn accumulation in grains


Song, Won-Yong; Lee, Hyun-Sook; Jin, Sang-Rak; Ko, Donghwi; Martinoia, Enrico; Lee, Youngsook; An, Gynheung; Ahn, Sang-Nag (2015). Rice PCR1 influences grain weight and Zn accumulation in grains. Plant, Cell & Environment, 38(11):2327-2339.

Abstract

Proteins containing a placenta-specific 8 domain (PLAC8) function as major organ size regulators in Solanum lycopersicum and Zea may, and putative metal ion transporters in Arabidopsis thaliana, Oryza sativa and Brassica juncea. However, it is unknown how PLAC8 domain-containing proteins fulfill such diverse roles. Here, we found that plant cadmium resistance 1 (PCR1) influences both zinc (Zn) accumulation and grain weight in rice. OsPCR1 knockout and knockdown lines produced lighter grains than the wild type, while OsPCR1 overexpression lines produced heavier grains. Furthermore, the grains of OsPCR1 knockdown lines exhibited substantially higher Zn and lower cadmium (Cd) concentrations than the control, as did yeast heterologously expressing OsPCR1. Through sequence analysis, we showed that the amino acid sequence of japonica-type PCR1 was distinct from that of indica-type and wild rice accessions. This difference was correlated with distinct Zn-related phenotypes. Japonica-type PCR1 had a shorter N-terminus than did PCR1 in the other rice types, and yeast heterologously expressing japonica-type PCR1 was more sensitive to Zn than was yeast expressing indica-type PCR1. Furthermore, japonica-type grains accumulated less Zn than did indica-type grains. Our study suggests that rice PCR1 maintains metal ion homeostasis and grain weight and might have been selected for during domestication.

Abstract

Proteins containing a placenta-specific 8 domain (PLAC8) function as major organ size regulators in Solanum lycopersicum and Zea may, and putative metal ion transporters in Arabidopsis thaliana, Oryza sativa and Brassica juncea. However, it is unknown how PLAC8 domain-containing proteins fulfill such diverse roles. Here, we found that plant cadmium resistance 1 (PCR1) influences both zinc (Zn) accumulation and grain weight in rice. OsPCR1 knockout and knockdown lines produced lighter grains than the wild type, while OsPCR1 overexpression lines produced heavier grains. Furthermore, the grains of OsPCR1 knockdown lines exhibited substantially higher Zn and lower cadmium (Cd) concentrations than the control, as did yeast heterologously expressing OsPCR1. Through sequence analysis, we showed that the amino acid sequence of japonica-type PCR1 was distinct from that of indica-type and wild rice accessions. This difference was correlated with distinct Zn-related phenotypes. Japonica-type PCR1 had a shorter N-terminus than did PCR1 in the other rice types, and yeast heterologously expressing japonica-type PCR1 was more sensitive to Zn than was yeast expressing indica-type PCR1. Furthermore, japonica-type grains accumulated less Zn than did indica-type grains. Our study suggests that rice PCR1 maintains metal ion homeostasis and grain weight and might have been selected for during domestication.

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:November 2015
Deposited On:18 Feb 2016 13:29
Last Modified:05 Apr 2016 20:03
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0140-7791
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/pce.12553
PubMed ID:25854544

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations