UZH-Logo

Renovascular hypertension by two-kidney one-clip enhances endothelial progenitor cell mobilization in a p47phox-dependent manner


Salguero, G; Akin, E; Templin, C; Kotlarz, D; Doerries, C; Landmesser, U; Grote, K; Schieffer, B (2008). Renovascular hypertension by two-kidney one-clip enhances endothelial progenitor cell mobilization in a p47phox-dependent manner. Journal of Hypertension, 26(2):257-268.

Abstract

BACKGROUND: Enhanced mechanical forces, e.g. in arterial hypertension, stimulate the formation of reactive oxygen species (ROS) by the NAD(P)H oxidase. Since bone marrow derived endothelial progenitor cells (EPCs) contribute to vascular remodeling and repair, we investigated whether renovascular hypertension stimulates EPC mobilization in a NAD(P)H oxidase-dependent manner. METHODS: Renovascular hypertension was induced by two-kidney one-clip (2K1C) in C57BL/6 (WT) and in mice lacking the p47phox subunit of the NAD(P)H oxidase (p47phox-/-). RESULTS: In WT, 2K1C increased blood pressure levels by 32.4 +/- 4 mmHg, which was associated with a four-fold increase in circulating EPCs (Sca-1+;Flk-1+). In p47phox-/- mice, the increase in blood pressure was significantly reduced (15.1 +/- 1.8 mmHg, P < 0.05) and not associated with increased EPCs. Inhibitors of the renin-angiotensin system (RAS) and nonspecific vasodilators normalized blood pressure and inhibited EPC mobilization in WT mice after 2K1C. In addition, p47phox deficiency and pharmacological ROS blockage abrogated 2K1C-induced blood pressure elevation and EPC mobilization. Stromal cell derived factor (SDF)-1 and matrix metalloproteinase (MMP)-9 activity in the bone marrow, required for EPC mobilization, were modulated in WT mice after 2K1C. In contrast, no alterations in SDF-1 and MMP-9 were observed in p47phox-/- mice. Moreover, enhanced migration of Lin- bone marrow mononuclear cells was observed when stimulated with plasma from 2K1C WT mice but not when stimulated with plasma from 2K1C p47phox-/- mice. CONCLUSION: Enhanced mechanical stretch in renovascular hypertension induces EPC mobilization in a p47phox-dependent manner, involving bone marrow SDF-1 and MMP-9 which may contribute to compensatory vascular adaptation in renovascular hypertension.

BACKGROUND: Enhanced mechanical forces, e.g. in arterial hypertension, stimulate the formation of reactive oxygen species (ROS) by the NAD(P)H oxidase. Since bone marrow derived endothelial progenitor cells (EPCs) contribute to vascular remodeling and repair, we investigated whether renovascular hypertension stimulates EPC mobilization in a NAD(P)H oxidase-dependent manner. METHODS: Renovascular hypertension was induced by two-kidney one-clip (2K1C) in C57BL/6 (WT) and in mice lacking the p47phox subunit of the NAD(P)H oxidase (p47phox-/-). RESULTS: In WT, 2K1C increased blood pressure levels by 32.4 +/- 4 mmHg, which was associated with a four-fold increase in circulating EPCs (Sca-1+;Flk-1+). In p47phox-/- mice, the increase in blood pressure was significantly reduced (15.1 +/- 1.8 mmHg, P < 0.05) and not associated with increased EPCs. Inhibitors of the renin-angiotensin system (RAS) and nonspecific vasodilators normalized blood pressure and inhibited EPC mobilization in WT mice after 2K1C. In addition, p47phox deficiency and pharmacological ROS blockage abrogated 2K1C-induced blood pressure elevation and EPC mobilization. Stromal cell derived factor (SDF)-1 and matrix metalloproteinase (MMP)-9 activity in the bone marrow, required for EPC mobilization, were modulated in WT mice after 2K1C. In contrast, no alterations in SDF-1 and MMP-9 were observed in p47phox-/- mice. Moreover, enhanced migration of Lin- bone marrow mononuclear cells was observed when stimulated with plasma from 2K1C WT mice but not when stimulated with plasma from 2K1C p47phox-/- mice. CONCLUSION: Enhanced mechanical stretch in renovascular hypertension induces EPC mobilization in a p47phox-dependent manner, involving bone marrow SDF-1 and MMP-9 which may contribute to compensatory vascular adaptation in renovascular hypertension.

Citations

24 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 04 Feb 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:February 2008
Deposited On:04 Feb 2009 11:29
Last Modified:05 Apr 2016 12:56
Publisher:Lippincott Wiliams & Wilkins
ISSN:0263-6352
Additional Information:This is a non-final version of an article published in final form in Journal of Hypertension
Publisher DOI:10.1097/HJH.0b013e3282f09f79
Official URL:http://www.jhypertension.com/pt/re/jhypertension/abstract.00004872-200802000-00018.htm;jsessionid=JJ6NpBsXPKLlMV2JSGG5nYL1B5yzHSHTvQFShq6mMLZp1T2VQ2BB!1321082991!181195629!8091!-1
PubMed ID:18192840
Permanent URL: http://doi.org/10.5167/uzh-12156

Download

[img]Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations