UZH-Logo

Maintenance Infos

Measurement of the forward-backward asymmetry in $Z/\gamma^{\ast} \rightarrow \mu^{+}\mu^{-}$ decays and determination of the effective weak mixing angle


LHCb Collaboration; Aaij, R; Adeva, B; Adinolfi, M; Anderson, J; Bernet, R; Bowen, E; Bursche, A; Chiapolini, N; Chrzaszcz, M; Dey, B; Elsasser, C; Graverini, E; Lionetto, F; Lowdon, P; Mauri, A; Müller, K; Serra, N; Steinkamp, O; Storaci, B; Straumann, U; Tresch, M; Vollhardt, A; Weiden, A; et al (2015). Measurement of the forward-backward asymmetry in $Z/\gamma^{\ast} \rightarrow \mu^{+}\mu^{-}$ decays and determination of the effective weak mixing angle. Journal of High Energy Physics, 2015(11):190.

Abstract

The forward-backward charge asymmetry for the process $q\bar{q} \rightarrow Z/\gamma^{\ast} \rightarrow \mu^{+}\mu^{-}$ is measured as a function of the invariant mass of the dimuon system. Measurements are performed using proton proton collision data collected with the LHCb detector at $\sqrt{s} = 7$ and 8\tev, corresponding to integrated luminosities of $1$fb$^{-1}$ and $2$fb$^{-1}$ respectively. Within the Standard Model the results constrain the effective electroweak mixing angle to be $$sin^{2}\theta_{W}^{eff} = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056 $$ where the first uncertainty is statistical, the second systematic and the third theoretical. This result is in agreement with the current world average, and is one of the most precise determinations at hadron colliders to date.

Abstract

The forward-backward charge asymmetry for the process $q\bar{q} \rightarrow Z/\gamma^{\ast} \rightarrow \mu^{+}\mu^{-}$ is measured as a function of the invariant mass of the dimuon system. Measurements are performed using proton proton collision data collected with the LHCb detector at $\sqrt{s} = 7$ and 8\tev, corresponding to integrated luminosities of $1$fb$^{-1}$ and $2$fb$^{-1}$ respectively. Within the Standard Model the results constrain the effective electroweak mixing angle to be $$sin^{2}\theta_{W}^{eff} = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056 $$ where the first uncertainty is statistical, the second systematic and the third theoretical. This result is in agreement with the current world average, and is one of the most precise determinations at hadron colliders to date.

Citations

Altmetrics

Downloads

10 downloads since deposited on 15 Feb 2016
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2015
Deposited On:15 Feb 2016 14:02
Last Modified:05 Apr 2016 20:08
Publisher:Springer
ISSN:1029-8479
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/JHEP11(2015)190
Related URLs:http://arxiv.org/abs/1509.07645 (Organisation)

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 513kB
View at publisher
[img]
Preview
Content: Published Version
Filetype: PDF
Size: 827kB
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations