UZH-Logo

Maintenance Infos

DECA: Development Emails Content Analyzer


Di Sorbo, Andrea; Panichella, Sebastiano; Visaggio, Corrado Aaron; Penta, Massimiliano Di; Canfora, Gerardo; Gall, Harald (2016). DECA: Development Emails Content Analyzer. In: Proceedings of the International Conference on Software Engineering (ICSE), Austin, TX, USA, 14 May 2016 - 22 May 2016.

Abstract

Written development discussions occurring over different communication means (e.g. issue trackers, development mailing lists, or IRC chats) represent a precious source of information for developers, as well as for researchers interested to build recommender systems. Such discussions contain text having different purposes, e.g. discussing feature requests, bugs to fix etc. In this context, the manual classification or filtering of such discussions in according to their purpose would be a daunting and time-consuming task. In this demo we present DECA (Development Emails Content Analyzer), a tool which uses Natural Language Parsing to classify the content of development emails according to their purpose, identifying email fragments that can be used for specific maintenance tasks. We applied DECA on the discussions occurring on the development mailing lists related to Qt and Ubuntu projects. The results highlight a high precision (90%) and recall (70%) of DECA in classifying email content providing useful information to developers interested in accomplishing specific development tasks. Demo URL: https://youtu.be/FmwBuBaW6Sk Demo Web Page: http://www.ifi.uzh.ch/seal/people/panichella/tools/DECA.html

Abstract

Written development discussions occurring over different communication means (e.g. issue trackers, development mailing lists, or IRC chats) represent a precious source of information for developers, as well as for researchers interested to build recommender systems. Such discussions contain text having different purposes, e.g. discussing feature requests, bugs to fix etc. In this context, the manual classification or filtering of such discussions in according to their purpose would be a daunting and time-consuming task. In this demo we present DECA (Development Emails Content Analyzer), a tool which uses Natural Language Parsing to classify the content of development emails according to their purpose, identifying email fragments that can be used for specific maintenance tasks. We applied DECA on the discussions occurring on the development mailing lists related to Qt and Ubuntu projects. The results highlight a high precision (90%) and recall (70%) of DECA in classifying email content providing useful information to developers interested in accomplishing specific development tasks. Demo URL: https://youtu.be/FmwBuBaW6Sk Demo Web Page: http://www.ifi.uzh.ch/seal/people/panichella/tools/DECA.html

Altmetrics

Downloads

43 downloads since deposited on 17 Feb 2016
43 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:22 May 2016
Deposited On:17 Feb 2016 13:27
Last Modified:31 Oct 2016 08:02
Publisher:IEEE
ISBN:978-1-4503-4205-6
Other Identification Number:merlin-id:13157

Download

[img]
Preview
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations