## Abstract

The branching fraction ratio $\mathcal{R}(D^{*}) \equiv \mathcal{B}(\overline{B}^0 \to D^{*+}\tau^{-}\overline{\nu}_{\tau})/\mathcal{B}(\overline{B}^0 \to D^{*+}\mu^{-}\overline{\nu}_{\mu})$ is measured using a sample of proton-proton collision data corresponding to 3.0\invfb of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode $\tau^{-} \to \mu^{-}\overline{\nu}_{\mu}\nu_{\tau}$. The semitauonic decay is sensitive to contributions from non-Standard-Model particles that preferentially couple to the third generation of fermions, in particular Higgs-like charged scalars. A multidimensional fit to kinematic distributions of the candidate $\overline{B}^0$ decays gives $\mathcal{R}(D^{*}) = 0.336 \pm 0.027(stat) \pm 0.030 (syst)$. This result, which is the first measurement of this quantity at a hadron collider, is $2.1$ standard deviations larger than the value expected from lepton universality in the Standard Model.