Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-12284

Cai, K; Durisen, R H; Boley, A C; Pickett, M K; Mejia, A C (2008). The thermal regulation of gravitational instabilities in protoplanetary disks. IV. Simulations with envelope irradiation. Astrophysical Journal, 673:1138-1153.

View at publisher


It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamics simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 Msun around a young star of 0.5 Msun, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower-order modes, and irradiation preferentially suppresses higher-order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two and three-armed modes


56 citations in Web of Science®
52 citations in Scopus®
Google Scholar™



38 downloads since deposited on 16 Feb 2009
15 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:February 2008
Deposited On:16 Feb 2009 14:17
Last Modified:05 Apr 2016 12:56
Publisher:Institute of Physics Publishing
Publisher DOI:10.1086/524101

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page