UZH-Logo

Maintenance Infos

A neural-based vocoder implementation for evaluating cochlear implant coding strategies


El Boghdady, Nawal; Kegel, Andrea; Lai, Waikong; Dillier, Norbert (2016). A neural-based vocoder implementation for evaluating cochlear implant coding strategies. Hearing research, 333:136-149.

Abstract

Most simulations of cochlear implant (CI) coding strategies rely on standard vocoders that are based on purely signal processing techniques. However, these models neither account for various biophysical phenomena, such as neural stochasticity and refractoriness, nor for effects of electrical stimulation, such as spectral smearing as a function of stimulus intensity. In this paper, a neural model that accounts for stochastic firing, parasitic spread of excitation across neuron populations, and neuronal refractoriness, was developed and augmented as a preprocessing stage for a standard 22-channel noise-band vocoder. This model was used to subjectively and objectively assess consonant discrimination in commercial and experimental coding strategies.
Stimuli consisting of consonant-vowel (CV) and vowel-consonant-vowel (VCV) tokens were processed by either the Advanced Combination Encoder (ACE) or the Excitability Controlled Coding (ECC) strategies, and later resynthesized to audio using the aforementioned vocoder model. Baseline performance was measured using unprocessed versions of the speech tokens.
Behavioural responses were collected from seven normal hearing (NH) volunteers, while EEG data were recorded from five NH participants. Psychophysical results indicate that while there may be a difference in consonant perception between the two tested coding strategies, mismatch negativity (MMN) waveforms do not show any marked trends in CV or VCV contrast discrimination.

Most simulations of cochlear implant (CI) coding strategies rely on standard vocoders that are based on purely signal processing techniques. However, these models neither account for various biophysical phenomena, such as neural stochasticity and refractoriness, nor for effects of electrical stimulation, such as spectral smearing as a function of stimulus intensity. In this paper, a neural model that accounts for stochastic firing, parasitic spread of excitation across neuron populations, and neuronal refractoriness, was developed and augmented as a preprocessing stage for a standard 22-channel noise-band vocoder. This model was used to subjectively and objectively assess consonant discrimination in commercial and experimental coding strategies.
Stimuli consisting of consonant-vowel (CV) and vowel-consonant-vowel (VCV) tokens were processed by either the Advanced Combination Encoder (ACE) or the Excitability Controlled Coding (ECC) strategies, and later resynthesized to audio using the aforementioned vocoder model. Baseline performance was measured using unprocessed versions of the speech tokens.
Behavioural responses were collected from seven normal hearing (NH) volunteers, while EEG data were recorded from five NH participants. Psychophysical results indicate that while there may be a difference in consonant perception between the two tested coding strategies, mismatch negativity (MMN) waveforms do not show any marked trends in CV or VCV contrast discrimination.

Altmetrics

Downloads

5 downloads since deposited on 24 Feb 2016
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:24 Feb 2016 14:13
Last Modified:05 Apr 2016 20:09
Publisher:Elsevier
ISSN:0378-5955
Publisher DOI:https://doi.org/10.1016/j.heares.2016.01.005
PubMed ID:26775182
Permanent URL: https://doi.org/10.5167/uzh-122849

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations