UZH-Logo

Maintenance Infos

Real-time respiratory triggered SPECT myocardial perfusion imaging using CZT technology: impact of respiratory phase matching between SPECT and low-dose CT for attenuation correction


Clerc, Oliver F; Fuchs, Tobias A; Possner, Mathias; Vontobel, Jan; Mikulicic, Fran; Stehli, Julia; Liga, Riccardo; Benz, Dominik C; Gräni, Christoph; Pazhenkottil, Aju P; Gaemperli, Oliver; Buechel, Ronny R; Kaufmann, Philipp A (2016). Real-time respiratory triggered SPECT myocardial perfusion imaging using CZT technology: impact of respiratory phase matching between SPECT and low-dose CT for attenuation correction. European Heart Journal. Cardiovascular Imaging:Epub ahead of print.

Abstract

AIMS: To assess the impact of respiratory phase matching between single-photon-emission computed tomography myocardial perfusion imaging (SPECT-MPI) and low-dose computed tomography (CT) for attenuation correction (AC).
METHODS AND RESULTS: Forty patients underwent 1-day (99m)Tc-tetrofosmin pharmacological stress/rest SPECT-MPI using a cadmium-zinc-telluride gamma camera. Low-dose CT for AC was performed at deep-inspiration breath-hold. SPECT-MPI was acquired once with free-breathing (FB) and repeated at deep-inspiration breath-hold (BH) to match the respiratory phase of AC. From these acquisitions we reconstructed four data sets: free-breathing SPECT-MPI without AC (non-corrected; FB-NC), breath-hold SPECT-MPI without AC (non-corrected; BH-NC), free-breathing SPECT-MPI with AC (FB-AC), and breath-hold SPECT-MPI with AC (BH-AC), the latter representing respiratory-phase-matched AC SPECT-MPI. We compared semi-quantitative segmental tracer uptake, visual diagnosis, inter-observer agreement, and image quality. Compared with FB-NC, deep-inspiration BH-NC increases inferior and lateral uptake, but decreases septal uptake. Addition of AC to FB increases inferior and septal uptake, but decreases anterolateral uptake. Combining breath-hold MPI with breath-hold CT AC (BH-AC) increases inferior, inferolateral, and septal uptake, but reduces apical uptake, without affecting anterolateral uptake, with significant differences to all other protocols. Frequency of normal scans increases across protocols: 10% with FB-NC, 21% with BH-NC, 38% with FB-AC, and 51% with BH-AC. Image quality and inter-observer agreement were highest for BH-AC among all protocols.
CONCLUSION: Compared with non-corrected breath-hold SPECT-MPI and with free-breathing AC SPECT-MPI, respiratory-phase-matched AC SPECT-MPI significantly affects segmental semi-quantitative uptake, increases the frequency of normal scans, yields the best inter-observer agreement, and significantly improves image quality. These findings suggest a potential role of respiratory triggered SPECT-MPI in clinical routine.

AIMS: To assess the impact of respiratory phase matching between single-photon-emission computed tomography myocardial perfusion imaging (SPECT-MPI) and low-dose computed tomography (CT) for attenuation correction (AC).
METHODS AND RESULTS: Forty patients underwent 1-day (99m)Tc-tetrofosmin pharmacological stress/rest SPECT-MPI using a cadmium-zinc-telluride gamma camera. Low-dose CT for AC was performed at deep-inspiration breath-hold. SPECT-MPI was acquired once with free-breathing (FB) and repeated at deep-inspiration breath-hold (BH) to match the respiratory phase of AC. From these acquisitions we reconstructed four data sets: free-breathing SPECT-MPI without AC (non-corrected; FB-NC), breath-hold SPECT-MPI without AC (non-corrected; BH-NC), free-breathing SPECT-MPI with AC (FB-AC), and breath-hold SPECT-MPI with AC (BH-AC), the latter representing respiratory-phase-matched AC SPECT-MPI. We compared semi-quantitative segmental tracer uptake, visual diagnosis, inter-observer agreement, and image quality. Compared with FB-NC, deep-inspiration BH-NC increases inferior and lateral uptake, but decreases septal uptake. Addition of AC to FB increases inferior and septal uptake, but decreases anterolateral uptake. Combining breath-hold MPI with breath-hold CT AC (BH-AC) increases inferior, inferolateral, and septal uptake, but reduces apical uptake, without affecting anterolateral uptake, with significant differences to all other protocols. Frequency of normal scans increases across protocols: 10% with FB-NC, 21% with BH-NC, 38% with FB-AC, and 51% with BH-AC. Image quality and inter-observer agreement were highest for BH-AC among all protocols.
CONCLUSION: Compared with non-corrected breath-hold SPECT-MPI and with free-breathing AC SPECT-MPI, respiratory-phase-matched AC SPECT-MPI significantly affects segmental semi-quantitative uptake, increases the frequency of normal scans, yields the best inter-observer agreement, and significantly improves image quality. These findings suggest a potential role of respiratory triggered SPECT-MPI in clinical routine.

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:CT attenuation correction; CZT; Cardiac imaging; Respiratory phase; SPECT
Language:English
Date:16 March 2016
Deposited On:22 Mar 2016 16:39
Last Modified:30 Aug 2016 12:57
Publisher:Oxford University Press
ISSN:2047-2404
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/ehjci/jew031
PubMed ID:26985074

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations