UZH-Logo

Maintenance Infos

Echinomycin did not affect the safety of fracture healing: an experimental pilot study on a murine femur fracture model


Jentzsch, Thorsten; Zimmermann, Stefan M; Nicholls, Flora; Cinelli, Paolo; Simmen, Hans-Peter; Werner, Clément M L (2016). Echinomycin did not affect the safety of fracture healing: an experimental pilot study on a murine femur fracture model. Patient Safety in Surgery, 10(7):online.

Abstract

BACKGROUND: There is a need for effective drugs in the prevention and treatment of heterotopic ossifications (HO) after fractures. Echinomycin has been shown to prevent formation of HO in an animal model. However, before it may be considered as an option against HO, it needs to be studied whether it prevents fracture healing similar to non-steroidal anti-inflammatory drugs (NSAIDS). Therefore, the hypothesis was that echinomycin prevents fracture healing and callus formation.
METHODS: In an experimental murine pilot study, standard blunt femur fractures were induced and retrograde intramedullary compression fixation of the femur was performed. The treatment group (n = 8) received echinomycin (0.3 mg/kg body weight) and the control group (n = 8) did not receive echinomycin. The fractures and implant positions were verified by conventional X-rays immediately postoperatively. As the primary outcome variable, fracture healing (osseous consolidation) was evaluated by conventional X-rays and micro-computed tomography (CT) scans after ten weeks and graded as healed, partial or complete pseudarthrosis. The secondary outcome, callus formation, was graded semi-quantitatively from 0 (mostly absent) to 3 (maximum).
RESULTS: Fracture healing was present in all living cases after ten weeks concerning the treatment group. Partial pseudarthrosis was seen in two cases, one in the treatment and another one in the control group. Complete pseudarthrosis was seen in one case of the control group after an open fracture. Callus formation was similar in both groups with a mean grade of 1.5 within each group. Two cases of the treatment group died.
CONCLUSION: As a novel finding, echinomycin did not inhibit fracture healing or callus formation in this in vivo murine standard femur fracture model pilot study. Further studies involving a larger number of cases, quantitative assessment with CT scans and histopathological analysis are needed before generalizing the results of this pilot study.

Abstract

BACKGROUND: There is a need for effective drugs in the prevention and treatment of heterotopic ossifications (HO) after fractures. Echinomycin has been shown to prevent formation of HO in an animal model. However, before it may be considered as an option against HO, it needs to be studied whether it prevents fracture healing similar to non-steroidal anti-inflammatory drugs (NSAIDS). Therefore, the hypothesis was that echinomycin prevents fracture healing and callus formation.
METHODS: In an experimental murine pilot study, standard blunt femur fractures were induced and retrograde intramedullary compression fixation of the femur was performed. The treatment group (n = 8) received echinomycin (0.3 mg/kg body weight) and the control group (n = 8) did not receive echinomycin. The fractures and implant positions were verified by conventional X-rays immediately postoperatively. As the primary outcome variable, fracture healing (osseous consolidation) was evaluated by conventional X-rays and micro-computed tomography (CT) scans after ten weeks and graded as healed, partial or complete pseudarthrosis. The secondary outcome, callus formation, was graded semi-quantitatively from 0 (mostly absent) to 3 (maximum).
RESULTS: Fracture healing was present in all living cases after ten weeks concerning the treatment group. Partial pseudarthrosis was seen in two cases, one in the treatment and another one in the control group. Complete pseudarthrosis was seen in one case of the control group after an open fracture. Callus formation was similar in both groups with a mean grade of 1.5 within each group. Two cases of the treatment group died.
CONCLUSION: As a novel finding, echinomycin did not inhibit fracture healing or callus formation in this in vivo murine standard femur fracture model pilot study. Further studies involving a larger number of cases, quantitative assessment with CT scans and histopathological analysis are needed before generalizing the results of this pilot study.

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 14 Apr 2016
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Trauma Surgery
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Bone healing; Callus formation; Echinomycin; Heterotopic ossification (HO); Murine femur fracture model
Date:2016
Deposited On:14 Apr 2016 17:23
Last Modified:14 Apr 2016 17:23
Publisher:BioMed Central
ISSN:1754-9493
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s13037-016-0094-9
Official URL:http://pssjournal.biomedcentral.com/articles/10.1186/s13037-016-0094-9
PubMed ID:26884813

Download

[img]
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 751kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations