UZH-Logo

Maintenance Infos

Secondary structure confirmation and localization of Mg2+ions in the mammalian CPEB3 ribozyme


Skilandat, Miriam; Rowinska-Zyrek, Magdalena; Sigel, Roland K O (2016). Secondary structure confirmation and localization of Mg2+ions in the mammalian CPEB3 ribozyme. RNA, 22(5):750-763.

Abstract

Most of today's knowledge of the CPEB3 ribozyme, one of the few small self-cleaving ribozymes known to occur in humans, is based on comparative studies with the hepatitis delta virus (HDV) ribozyme, which is highly similar in cleavage mechanism and probably also in structure. Here we present detailed NMR studies of the CPEB3 ribozyme in order to verify the formation of the predicted nested double pseudoknot in solution. In particular, the influence of Mg2+, the ribozyme's crucial cofactor, on the CPEB3 structure is investigated. NMR titrations, Tb3+-induced cleavage, as well as stoichiometry determination by hydroxyquinoline sulfonic acid fluorescence and equilibrium dialysis, are used to evaluate the number, location, and binding mode of Mg2+ ions. Up to eight Mg2+ ions interact site-specifically with the ribozyme, four of which are bound with high affinity. The global fold of the CPEB3 ribozyme, encompassing 80%–90% of the predicted base pairs, is formed in the presence of monovalent ions alone. Low millimolar concentrations of Mg2+ promote a more compact fold and lead to the formation of additional structures in the core of the ribozyme, which contains the inner small pseudoknot and the active site. Several Mg2+ binding sites, which are important for the functional fold, appear to be located in corresponding locations in the HDV and CPEB3 ribozyme, demonstrating the particular relevance of Mg2+ for the nested double pseudoknot structure.

Abstract

Most of today's knowledge of the CPEB3 ribozyme, one of the few small self-cleaving ribozymes known to occur in humans, is based on comparative studies with the hepatitis delta virus (HDV) ribozyme, which is highly similar in cleavage mechanism and probably also in structure. Here we present detailed NMR studies of the CPEB3 ribozyme in order to verify the formation of the predicted nested double pseudoknot in solution. In particular, the influence of Mg2+, the ribozyme's crucial cofactor, on the CPEB3 structure is investigated. NMR titrations, Tb3+-induced cleavage, as well as stoichiometry determination by hydroxyquinoline sulfonic acid fluorescence and equilibrium dialysis, are used to evaluate the number, location, and binding mode of Mg2+ ions. Up to eight Mg2+ ions interact site-specifically with the ribozyme, four of which are bound with high affinity. The global fold of the CPEB3 ribozyme, encompassing 80%–90% of the predicted base pairs, is formed in the presence of monovalent ions alone. Low millimolar concentrations of Mg2+ promote a more compact fold and lead to the formation of additional structures in the core of the ribozyme, which contains the inner small pseudoknot and the active site. Several Mg2+ binding sites, which are important for the functional fold, appear to be located in corresponding locations in the HDV and CPEB3 ribozyme, demonstrating the particular relevance of Mg2+ for the nested double pseudoknot structure.

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 23 Apr 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:10 March 2016
Deposited On:23 Apr 2016 13:47
Last Modified:31 Oct 2016 08:14
Publisher:RNA Society / Cold Spring Harbor Laboratory Press
ISSN:1355-8382
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1261/rna.053843.115
PubMed ID:26966151

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only until 10 March 2017
Size: 1MB
View at publisher
Embargo till: 2017-03-10

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations