UZH-Logo

Maintenance Infos

Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain.


Marti, H H; Gassmann, M; Wenger, R H; Kvietikova, I; Morganti-Kossmann, M C; Kossmann, T; Trentz, O; Bauer, C (1997). Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain. Kidney International, 51(2):416-418.

Abstract

Until now, erythropoietin (EPO) was thought to be produced exclusively in fetal liver and adult kidney and to regulate mammalian erythropoiesis. However, we recently showed that steady state levels of EPO mRNA could be induced up to 100-fold in primary mouse astrocytes cultured under hypoxic conditions, and also reported the presence of mRNA for EPO and its receptor in the brain of mouse, monkey and human. In extending these studies on humans we now show that immunoreactive EPO is present in ventricular cerebrospinal fluid (CSF) of 5 patients with traumatic brain injuries: EPO was found in 15 out of 15 CSF samples. There was no correlation between the serum EPO concentration and the concentration in the CSF. However, EPO concentrations in CSF correlated with the degree of blood-brain-barrier dysfunction. This suggests that EPO does not cross the intact blood-brain-barrier, implying that EPO is produced in the brain itself, most probably by astrocytes in an oxygen-dependent manner. In view that neuronal cells carry the EPO receptor, we propose that EPO acts in a paracrine fashion in the central nervous system and might function as a protective factor against hypoxia-induced damage of neurons.

Until now, erythropoietin (EPO) was thought to be produced exclusively in fetal liver and adult kidney and to regulate mammalian erythropoiesis. However, we recently showed that steady state levels of EPO mRNA could be induced up to 100-fold in primary mouse astrocytes cultured under hypoxic conditions, and also reported the presence of mRNA for EPO and its receptor in the brain of mouse, monkey and human. In extending these studies on humans we now show that immunoreactive EPO is present in ventricular cerebrospinal fluid (CSF) of 5 patients with traumatic brain injuries: EPO was found in 15 out of 15 CSF samples. There was no correlation between the serum EPO concentration and the concentration in the CSF. However, EPO concentrations in CSF correlated with the degree of blood-brain-barrier dysfunction. This suggests that EPO does not cross the intact blood-brain-barrier, implying that EPO is produced in the brain itself, most probably by astrocytes in an oxygen-dependent manner. In view that neuronal cells carry the EPO receptor, we propose that EPO acts in a paracrine fashion in the central nervous system and might function as a protective factor against hypoxia-induced damage of neurons.

Citations

109 citations in Web of Science®
126 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1997
Deposited On:11 Feb 2008 12:21
Last Modified:05 Apr 2016 12:17
Publisher:Nature Publishing Group
ISSN:0085-2538
Publisher DOI:10.1038/ki.1997.55
PubMed ID:9027715

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations