UZH-Logo

Maintenance Infos

Common SIRT1 variants modify the effect of abdominal adipose tissue on aging-related lung function decline


Curjuric, Ivan; Imboden, Medea; Bridevaux, Pierre-Olivier; Gerbase, Margaret W; Haun, Margot; Keidel, Dirk; Kumar, Ashish; Pons, Marco; Rochat, Thierry; Schikowski, Tamara; Schindler, Christian; von Eckardstein, Arnold; Kronenberg, Florian; Probst-Hensch, Nicole M (2016). Common SIRT1 variants modify the effect of abdominal adipose tissue on aging-related lung function decline. Age, 38(3):52.

Abstract

Lung function is an independent predictor of mortality and serves as an aging marker in never smokers. The protein sirtuin-1 of gene SIRT1 has profound anti-inflammatory effects and regulates metabolic pathways. Its suggested longevity effects on lower organisms remain poorly studied in humans. In 1132 never smokers of the population-based SAPALDIA cohort, we investigated associations between single nucleotide polymorphisms (SNPs; rs730821, rs10997868, rs10823116) of SIRT1 and aging-related lung function decline over 11 years in terms of change in forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC ratio, and forced expiratory flow between 25 and 75 % of FVC (FEF25-75) using multiple linear regression models. Interactions between the SIRT1 SNPs and adiposity parameters (body mass index (BMI), its change and weight gain) were tested by including multiplicative interaction terms into the models. SIRT1 polymorphisms exhibited no main effects, but modified the association between obesity measures and FEV1/FVC and FEF25-75 decline (p = 0.009-0.046). Per risk allele, FEV1/FVC decline was accelerated up to -0.5 % (95 % CI -1.0 to 0 %) and -0.7 % (-1.3 to -0.2 %) over interquartile range increases in BMI (2.4 kg/m(2)) or weight (6.5 kg), respectively. For FEF25-75 decline, corresponding estimates were -57 mL/s (-117 to 4 mL/s) and -76 mL/s (-1429 to -9 mL/s). Interactions were not present in participants with genetically lowered C-reactive protein concentrations. Genetic variation in SIRT1 might therefore affect lung function and human longevity by modifying subclinical inflammation arising from abdominal adipose tissue.

Abstract

Lung function is an independent predictor of mortality and serves as an aging marker in never smokers. The protein sirtuin-1 of gene SIRT1 has profound anti-inflammatory effects and regulates metabolic pathways. Its suggested longevity effects on lower organisms remain poorly studied in humans. In 1132 never smokers of the population-based SAPALDIA cohort, we investigated associations between single nucleotide polymorphisms (SNPs; rs730821, rs10997868, rs10823116) of SIRT1 and aging-related lung function decline over 11 years in terms of change in forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC ratio, and forced expiratory flow between 25 and 75 % of FVC (FEF25-75) using multiple linear regression models. Interactions between the SIRT1 SNPs and adiposity parameters (body mass index (BMI), its change and weight gain) were tested by including multiplicative interaction terms into the models. SIRT1 polymorphisms exhibited no main effects, but modified the association between obesity measures and FEV1/FVC and FEF25-75 decline (p = 0.009-0.046). Per risk allele, FEV1/FVC decline was accelerated up to -0.5 % (95 % CI -1.0 to 0 %) and -0.7 % (-1.3 to -0.2 %) over interquartile range increases in BMI (2.4 kg/m(2)) or weight (6.5 kg), respectively. For FEF25-75 decline, corresponding estimates were -57 mL/s (-117 to 4 mL/s) and -76 mL/s (-1429 to -9 mL/s). Interactions were not present in participants with genetically lowered C-reactive protein concentrations. Genetic variation in SIRT1 might therefore affect lung function and human longevity by modifying subclinical inflammation arising from abdominal adipose tissue.

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Clinical Chemistry
Dewey Decimal Classification:610 Medicine & health
540 Chemistry
Language:English
Date:June 2016
Deposited On:05 Jul 2016 14:18
Last Modified:31 Aug 2016 07:54
Publisher:Springer
ISSN:0161-9152
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s11357-016-9917-y
PubMed ID:27125385

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations