UZH-Logo

Maintenance Infos

Hypoxia of the growing liver accelerates regeneration


Abstract

Background. After portal vein ligation of 1 side of the liver, the other side regenerates at a slow rate. This slow growth may be accelerated to rapid growth by adding a transection between the 2 sides, i.e., performing portal vein ligation and parenchymal transection. We found that in patients undergoing portal vein ligation and parenchymal transection, portal vein hyperflow in the regenerating liver causes a significant reduction of arterial flow due to the hepatic arterial buffer response. We postulated that the reduction of arterial flow induces hypoxia in the regenerating liver and used a rat model to assess hypoxia and its impact on kinetic growth. Methods. A rat model of rapid (portal vein ligation and parenchymal transection) and slow regeneration (portal vein ligation) was established. Portal vein flow and pressure data were collected. Liver regeneration was assessed in rats using computed tomography, proliferation with Ki-67, and hypoxia with pimonidazole and HIF-1a staining. Results. The rat model confirmed acceleration of regeneration in portal vein ligation and parenchymal transection as well as the portal vein hyperflow seen in patients. Additionally, tissue hypoxia was observed after portal vein ligation and parenchymal transection, while little hypoxia staining was detected after portal vein ligation. To determine if hypoxia is a consequence or an inciting stimulus of rapid liver regeneration, we used a prolyl-hydroxylase blocker to activate hypoxia signaling pathways in the slow model. This clearly accelerated slow to rapid liver regeneration. Inversely, abrogation of hypoxia led to a blunting of rapid growth to slow growth. The topical application of prolyl-hydroxylase inhibitors on livers in rats induced spontaneous areas of regeneration. Conclusion. This study shows that pharmacologically induced hypoxic signaling accelerates liver regeneration similar to portal vein ligation and parenchymal transection. Hypoxia is likely an accelerator of liver regeneration. Also, prolyl-hydroxylase inhibitors may be used to enhance liver regeneration pharmaceutically.

Background. After portal vein ligation of 1 side of the liver, the other side regenerates at a slow rate. This slow growth may be accelerated to rapid growth by adding a transection between the 2 sides, i.e., performing portal vein ligation and parenchymal transection. We found that in patients undergoing portal vein ligation and parenchymal transection, portal vein hyperflow in the regenerating liver causes a significant reduction of arterial flow due to the hepatic arterial buffer response. We postulated that the reduction of arterial flow induces hypoxia in the regenerating liver and used a rat model to assess hypoxia and its impact on kinetic growth. Methods. A rat model of rapid (portal vein ligation and parenchymal transection) and slow regeneration (portal vein ligation) was established. Portal vein flow and pressure data were collected. Liver regeneration was assessed in rats using computed tomography, proliferation with Ki-67, and hypoxia with pimonidazole and HIF-1a staining. Results. The rat model confirmed acceleration of regeneration in portal vein ligation and parenchymal transection as well as the portal vein hyperflow seen in patients. Additionally, tissue hypoxia was observed after portal vein ligation and parenchymal transection, while little hypoxia staining was detected after portal vein ligation. To determine if hypoxia is a consequence or an inciting stimulus of rapid liver regeneration, we used a prolyl-hydroxylase blocker to activate hypoxia signaling pathways in the slow model. This clearly accelerated slow to rapid liver regeneration. Inversely, abrogation of hypoxia led to a blunting of rapid growth to slow growth. The topical application of prolyl-hydroxylase inhibitors on livers in rats induced spontaneous areas of regeneration. Conclusion. This study shows that pharmacologically induced hypoxic signaling accelerates liver regeneration similar to portal vein ligation and parenchymal transection. Hypoxia is likely an accelerator of liver regeneration. Also, prolyl-hydroxylase inhibitors may be used to enhance liver regeneration pharmaceutically.

Altmetrics

Downloads

1 download since deposited on 04 Aug 2016
1 download since 12 months
Detailed statistics

Additional indexing

Contributors:Tobias Piegeler, MD to the collection of data for the animal experiment and to the drafting of the first version of this paper
Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:2016
Deposited On:04 Aug 2016 07:24
Last Modified:04 Aug 2016 07:24
Publisher:Elsevier
ISSN:0039-6060
Publisher DOI:https://doi.org/10.1016/j.surg.2016.05.018
PubMed ID:27436690
Permanent URL: https://doi.org/10.5167/uzh-125169

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only until August 2017
Size: 3MB
View at publisher
Embargo till: 2017-08

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations