UZH-Logo

Maintenance Infos

Clean donor oxidation enhances H2 evolution activity of a carbon quantum dot-molecular catalyst photosystem


Martindale, Benjamin C M; Joliat, Evelyne; Bachmann, Cyril; Alberto, Roger; Reisner, Erwin (2016). Clean donor oxidation enhances H2 evolution activity of a carbon quantum dot-molecular catalyst photosystem. Angewandte Chemie Internationale Edition, 55(32):9402-9406.

Abstract

Carbon quantum dots (CQDs) are new-generation light absorbers for photocatalytic H2 evolution in aqueous solution, but the performance of CQD-molecular catalyst systems is currently limited by the decomposition of the molecular component. Clean oxidation of the electron donor by donor recycling prevents the formation of destructive radical species and non-innocent oxidation products. This approach allowed a CQD-molecular nickel bis(diphosphine) photocatalyst system to reach a benchmark lifetime of more than 5 days and a record turnover number of 1094±61 molH2  (molNi )(-1) for a defined synthetic molecular nickel catalyst in purely aqueous solution under AM1.5G solar irradiation.

Abstract

Carbon quantum dots (CQDs) are new-generation light absorbers for photocatalytic H2 evolution in aqueous solution, but the performance of CQD-molecular catalyst systems is currently limited by the decomposition of the molecular component. Clean oxidation of the electron donor by donor recycling prevents the formation of destructive radical species and non-innocent oxidation products. This approach allowed a CQD-molecular nickel bis(diphosphine) photocatalyst system to reach a benchmark lifetime of more than 5 days and a record turnover number of 1094±61 molH2  (molNi )(-1) for a defined synthetic molecular nickel catalyst in purely aqueous solution under AM1.5G solar irradiation.

Altmetrics

Downloads

0 downloads since deposited on 04 Aug 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:29 June 2016
Deposited On:04 Aug 2016 12:23
Last Modified:05 Aug 2016 08:05
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1433-7851
Publisher DOI:https://doi.org/10.1002/anie.201604355
PubMed ID:27355200

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations