UZH-Logo

Maintenance Infos

Vector map constrained path bundling in 3D environments


Thöny, Matthias; Pajarola, Renato (2015). Vector map constrained path bundling in 3D environments. In: ACM SIGSPATIAL International Workshop on GeoStreaming, Bellevue, WA, USA, 3 November 2015 - 6 November 2015, 33-42.

Abstract

Dense line graphs and polyline maps are challenging for interactive visualization in geographic information systems (GIS). Bundling techniques are a common approach to reduce clutter and have successfully been demonstrated for the display of complex planar graphs. Previous techniques typically employed some form of attraction or repulsion forces to bundle edges in two dimensions, and while in principle extensible to 3D they do not directly support hard intersection constraints in a 3D environment. In geographic visualization systems, e.g. such as interactive virtual globes or 3D GIS viewers, it is often necessary to take the 3D environment into account and to: (1) bundle lines and paths in 3D, (2) constrain path bundles to follow some reference network vector map, as well as (3) avoid intersections with the digital elevation model (DEM). In this paper we introduce a novel method which uses geographic vector map reference information to route, visualize and simplify path bundles along their network paths in a constrained 3D environment using adaptive B-splines. Moreover, we describe an efficient rendering architecture to flexibly display bundled paths within a 3D rendering pipeline at varying level of detail (LOD).

Abstract

Dense line graphs and polyline maps are challenging for interactive visualization in geographic information systems (GIS). Bundling techniques are a common approach to reduce clutter and have successfully been demonstrated for the display of complex planar graphs. Previous techniques typically employed some form of attraction or repulsion forces to bundle edges in two dimensions, and while in principle extensible to 3D they do not directly support hard intersection constraints in a 3D environment. In geographic visualization systems, e.g. such as interactive virtual globes or 3D GIS viewers, it is often necessary to take the 3D environment into account and to: (1) bundle lines and paths in 3D, (2) constrain path bundles to follow some reference network vector map, as well as (3) avoid intersections with the digital elevation model (DEM). In this paper we introduce a novel method which uses geographic vector map reference information to route, visualize and simplify path bundles along their network paths in a constrained 3D environment using adaptive B-splines. Moreover, we describe an efficient rendering architecture to flexibly display bundled paths within a 3D rendering pipeline at varying level of detail (LOD).

Altmetrics

Downloads

1 download since deposited on 12 Aug 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:6 November 2015
Deposited On:12 Aug 2016 08:38
Last Modified:12 Aug 2016 18:30
Publisher:ACM
ISBN:978-1-4503-3971-1
Free access at:Related URL. An embargo period may apply.
Publisher DOI:https://doi.org/10.1145/2833165.2833168
Related URLs:http://sigspatial2015.sigspatial.org/workshops/ (Organisation)
http://www.iwgeostream.com/ (Organisation)
Other Identification Number:merlin-id:12913

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 21MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations