In the presence of conditional heteroskedasticity, inference about the coefficients in a linear regression model these days is typically based on the ordinary least squares estimator in conjunction with using heteroskedasticity consistent standard errors. Similarly, even when the true form of heteroskedasticity is unknown, heteroskedasticity consistent standard errors can be used to base valid inference on a weighted least squares estimator. Using a weighted least squares estimator can provide large gains in efficiency over the ordinary least squares estimator. However, intervals based on plug-in standard errors often have coverage that is below the nominal level, especially for small sample sizes. In this paper, it is shown that a bootstrap approximation to the sampling distribution of the weighted least squares estimate is valid, which allows for inference with improved finite-sample properties. Furthermore, when the model used to estimate the unknown form of the heteroskedasticity is misspecified, the weighted least squares estimator may be less efficient than the ordinary least squares estimator. To address this problem, a new estimator is proposed that is asymptotically at least as efficient as both the ordinary and the weighted least squares estimator. Simulation studies demonstrate the attractive finite-sample properties of this new estimator as well as the improvements in performance realized by bootstrap confidence intervals.

DiCiccio, Cyrus J; Romano, Joseph P; Wolf, Michael (2016). *Improving weighted least squares inference.* Working paper series / Department of Economics 232, University of Zurich.

## Abstract

In the presence of conditional heteroskedasticity, inference about the coefficients in a linear regression model these days is typically based on the ordinary least squares estimator in conjunction with using heteroskedasticity consistent standard errors. Similarly, even when the true form of heteroskedasticity is unknown, heteroskedasticity consistent standard errors can be used to base valid inference on a weighted least squares estimator. Using a weighted least squares estimator can provide large gains in efficiency over the ordinary least squares estimator. However, intervals based on plug-in standard errors often have coverage that is below the nominal level, especially for small sample sizes. In this paper, it is shown that a bootstrap approximation to the sampling distribution of the weighted least squares estimate is valid, which allows for inference with improved finite-sample properties. Furthermore, when the model used to estimate the unknown form of the heteroskedasticity is misspecified, the weighted least squares estimator may be less efficient than the ordinary least squares estimator. To address this problem, a new estimator is proposed that is asymptotically at least as efficient as both the ordinary and the weighted least squares estimator. Simulation studies demonstrate the attractive finite-sample properties of this new estimator as well as the improvements in performance realized by bootstrap confidence intervals.

## Downloads

0 downloads since 12 months

## Additional indexing

Item Type: | Working Paper |
---|---|

Communities & Collections: | 03 Faculty of Economics > Department of Economics
Working Paper Series > Department of Economics |

Dewey Decimal Classification: | 330 Economics |

JEL Classification: | C12, C13, C21 |

Uncontrolled Keywords: | Bootstrap, conditional heteroskedasticity, HC standard errors |

Language: | English |

Date: | August 2016 |

Deposited On: | 10 Aug 2016 12:59 |

Last Modified: | 10 Aug 2016 13:09 |

Series Name: | Working paper series / Department of Economics |

Number of Pages: | 33 |

ISSN: | 1664-7041 |

Official URL: | http://www.econ.uzh.ch/static/wp/econwp232.pdf |

Related URLs: | http://www.econ.uzh.ch/static/workingpapers.php |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.