# Bivariate return periods and their importance for flood peak and volume estimation - Zurich Open Repository and Archive

Brunner, Manuela Irene; Favre, Anne-Catherine; Seibert, Jan (2016). Bivariate return periods and their importance for flood peak and volume estimation. Wiley Interdisciplinary Reviews: Water, 3(6):819-833.

## Abstract

Estimates of flood event magnitudes with a certain return period are required for the design of hydraulic structures. While the return period is clearly defined in a univariate context, its definition is more challenging when the problem at hand requires considering the dependence between two or more variables in a multivariate framework. Several ways of defining a multivariate return period have been proposed in the literature, which all rely on different probability concepts. Definitions use the conditional probability, the joint probability, or can be based on the Kendall’s distribution or survival function. In this study, we give a comprehensive overview on the tools that are available to define a return period in a multivariate context. We especially address engineers, practitioners, and people who are new to the topic and provide them with an accessible introduction to the topic. We outline the theoretical background that is needed when one is in a multivariate setting and present the reader with different definitions for a bivariate return period. Here, we focus on flood events and the different probability concepts are explained with a pedagogical, illustrative example of a flood event characterized by the two variables peak discharge and flood volume. The choice of the return period has an important effect on the magnitude of the design variable quantiles, which is illustrated with a case study in Switzerland. However, this choice is not arbitrary and depends on the problem at hand.

## Abstract

Estimates of flood event magnitudes with a certain return period are required for the design of hydraulic structures. While the return period is clearly defined in a univariate context, its definition is more challenging when the problem at hand requires considering the dependence between two or more variables in a multivariate framework. Several ways of defining a multivariate return period have been proposed in the literature, which all rely on different probability concepts. Definitions use the conditional probability, the joint probability, or can be based on the Kendall’s distribution or survival function. In this study, we give a comprehensive overview on the tools that are available to define a return period in a multivariate context. We especially address engineers, practitioners, and people who are new to the topic and provide them with an accessible introduction to the topic. We outline the theoretical background that is needed when one is in a multivariate setting and present the reader with different definitions for a bivariate return period. Here, we focus on flood events and the different probability concepts are explained with a pedagogical, illustrative example of a flood event characterized by the two variables peak discharge and flood volume. The choice of the return period has an important effect on the magnitude of the design variable quantiles, which is illustrated with a case study in Switzerland. However, this choice is not arbitrary and depends on the problem at hand.

## Altmetrics

Detailed statistics

Item Type: Journal Article, refereed, further contribution 07 Faculty of Science > Institute of Geography 910 Geography & travel English 4 September 2016 19 Sep 2016 05:39 15 Oct 2016 01:01 Wiley-Blackwell Publishing, Inc. 2049-1948 Bundesamt für Umwelt (BAFU) https://doi.org/10.1002/wat2.1173

Content: Published Version
Filetype: PDF - Registered users only
Size: 564kB
View at publisher
Content: Accepted Version
Filetype: PDF - Registered users only until 5 September 2017
Size: 1MB
Embargo till: 2017-09-05

## TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.