UZH-Logo

Maintenance Infos

A potential mouse model for the erosive vitreoretinopathy of Wagner disease


Kloeckener-Gruissem, Barbara; Dours-Zimmermann, Maria T; Skosyrski, Sergej; Brunner, Sandra; Mjaatvedt, Corey H; Zimmermann, Dieter R; Rüther, Klaus; Berger, Wolfgang (2016). A potential mouse model for the erosive vitreoretinopathy of Wagner disease. ScienceMatters:20160500004.

Abstract

Patients with the very rare eye pathology Wagner disease (OMIM #143200) present with an abnormal (empty) vitreous, retinal detachment and altered electroretinogram (ERG). The disease is progressive and can eventually lead to blindness. No therapy can be offered to date. The genetic basis is the presence of mutations in the VCAN gene, encoding the large extracellular matrix molecule versican, which is a component of the vitreous. All identified mutations map to the canonical splice sites flanking exon 8, resulting in low number of aberrant splice products and a severe increase in two (V2, V3) of the four naturally occurring splice variants. The pathomechanism of Wagner's disease is poorly understood and a mouse model may afford further insight. The hdf -/- mice, named for their initial phenotype of heart defects, carry a null allele for Vcan that leads to embryonic lethality when homozygous, but heterozygote animals are viable. Here we investigated a possible eye phenotype in the heterozygous animals. While the overall morphology of retina and ciliary body appears to be normal, older (17 months) mutant animals show a decrease in ERG signaling profiles affecting the a-, b- and c-waves. This aspect of altered ERG profile demonstrates similarities to the human disease manifestation and underlines the suitability of heterozygous hdf+/- mice as a model for Wagner disease.

Patients with the very rare eye pathology Wagner disease (OMIM #143200) present with an abnormal (empty) vitreous, retinal detachment and altered electroretinogram (ERG). The disease is progressive and can eventually lead to blindness. No therapy can be offered to date. The genetic basis is the presence of mutations in the VCAN gene, encoding the large extracellular matrix molecule versican, which is a component of the vitreous. All identified mutations map to the canonical splice sites flanking exon 8, resulting in low number of aberrant splice products and a severe increase in two (V2, V3) of the four naturally occurring splice variants. The pathomechanism of Wagner's disease is poorly understood and a mouse model may afford further insight. The hdf -/- mice, named for their initial phenotype of heart defects, carry a null allele for Vcan that leads to embryonic lethality when homozygous, but heterozygote animals are viable. Here we investigated a possible eye phenotype in the heterozygous animals. While the overall morphology of retina and ciliary body appears to be normal, older (17 months) mutant animals show a decrease in ERG signaling profiles affecting the a-, b- and c-waves. This aspect of altered ERG profile demonstrates similarities to the human disease manifestation and underlines the suitability of heterozygous hdf+/- mice as a model for Wagner disease.

Downloads

3 downloads since deposited on 29 Sep 2016
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Surgical Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:16 September 2016
Deposited On:29 Sep 2016 08:18
Last Modified:03 Nov 2016 11:44
Publisher:Matters
Free access at:Publisher DOI. An embargo period may apply.
Official URL:https://sciencematters.io/articles/201605000004
Permanent URL: https://doi.org/10.5167/uzh-126310

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 340kB
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations