Reply to F. Felix et al and M.F. Fay et al

Happold, C; Gorlia, T; Chinot, O; Gilbert, M R; Nabors, L B; Wick, W; Pugh, S L; Hegi, M; Cloughesy, T; Roth, P; Reardon, D A; Perry, J R; Mehta, M P; Stupp, R; Weller, M

DOI: https://doi.org/10.1200/JCO.2016.68.0926

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-126705
Published Version

Originally published at:
Happold, C; Gorlia, T; Chinot, O; Gilbert, M R; Nabors, L B; Wick, W; Pugh, S L; Hegi, M; Cloughesy, T; Roth, P; Reardon, D A; Perry, J R; Mehta, M P; Stupp, R; Weller, M (2016). Reply to F. Felix et al and M.F. Fay et al. Journal of Clinical Oncology, 34(25):3107-3108.
DOI: https://doi.org/10.1200/JCO.2016.68.0926
Reply to F. Felix et al and M.F. Fay et al

In our recent article in *Journal of Clinical Oncology* titled, “Does Valproic Acid or Levetiracetam Improve Survival in Glioblastoma? A Pooled Analysis of Prospective Clinical Trials in Newly Diagnosed Glioblastoma,”1 we reported that drug repurposing has attracted a lot of interest, specifically in glioblastoma, given the disappointing results obtained with initially promising, but ultimately inactive novel treatments and the availability of large databases suitable for exploratory analyses. In that regard, the potential impact on survival of the anticonvulsant drug, valproic acid, has been in focus for more than a decade. Yet, the pooled analysis of several contemporary clinical trials that enrolled almost 2,000 patients, which set out to strengthen the rationale for testing valproic acid in a randomized definitive phase III trial in newly diagnosed glioblastoma, failed to provide an adequate signal to support such a hypothesis in an otherwise molecularly unselected group of adult glioblastoma.1

Felix and Fontenele2 rightly raise the issue that patients in these trials were not enriched for any biomarker that predicted potential benefit from valproic acid and propose that valproic acid be tested specifically in pediatric patients with H3F3A mutation, mostly pontine gliomas. There is a possible biologic and molecular rationale to explore valproic acid in this subgroup of patients on the basis of the predicted epigenetic effects of valproic acid; however, three issues arise. First, such patients are relatively rare among those with glioblastoma and are underrepresented in the patient cohorts studied in the trials compiled for our analysis despite that our study included almost 2,000 patients (which underscores the rarity of this target). Second, the concentrations of valproic acid required to inhibit histone deacetylases may not be reached in human patients in vivo.2 Third, is valproic acid truly the best histone deacetylase inhibitor to study in this context?

Fay et al3 raise some methodological issues about our analysis. They express concerns that confounders were not sufficiently analyzed, but the analysis we presented was adjusted for known important confounding factors, including O6-methylguanine DNA methyltransferase promoter methylation status, and probably represents one of the best efforts that could be done in the context of clinical trial database analysis. The issue that sicker patients with larger tumors were more likely to have received valproic acid due to associated seizures was not substantiated by our database; there were no particular clinical characteristics of valproic acid–treated patients that differed from those not receiving it. That physicians would be less inclined to give valproic acid to patients with larger tumors with a higher bleeding propensity would argue against the authors’ hypothesis that we overlooked an effect of valproic acid because this would provide an even stronger bias in favor of superior survival in the valproic acid groups. As discussed in the present publication as well as in the initial report,3 the major weakness we acknowledge is the lack of solid data on the dose and duration of valproic acid exposure. Yet, the analysis was repeated at clinically relevant time points (at baseline and after concomitant temozolomide/radiotherapy) with the same conclusions. It is conceivable that for a beneficial effect in glioblastoma, early and high-dose treatment with valproic acid would be required, although no categorical data truly support this contention. Thus, we contend that analyses such as those reported here are not suitable to completely rule out an effect of valproic acid on outcome, especially on minuscule subsets with unique biologic characteristics. However, our data are robust enough to exclude any major effect of valproic acid, especially in significant proportions of patients with glioblastoma. Furthermore, any beneficial effect would have to be weighed against the major toxicity associated with prolonged high-dose valproic acid treatment (eg, hematologic abnormalities, hair loss, weight gain) in a patient population already significantly affected by other treatments such as corticosteroids, irradiation, and alkylating agent chemotherapy.

We appreciate the interest of our colleagues in further studying this topic, and we agree that further retrospective studies are unlikely to resolve the issue unless we arrive at the conclusion that we have definitively ruled out a major benefit of valproic acid in molecularly unselected newly diagnosed glioblastoma. In fact, the European Organisation for Research and Treatment of Cancer Brain Tumor Group has arrived at the latter conclusion and will not further pursue the idea of a randomized phase III trial of valproic acid in newly diagnosed glioblastoma.

Caroline Happold
University Hospital Zurich, Zurich, Switzerland

Thierry Gorlia
European Organisation for Research and Treatment of Cancer Data Centre, Brussels, Belgium

Oliver Chinot
Aix-Marseille University, Marseille, France

Mark R. Gilbert
The University of Texas MD Anderson Cancer Center, Houston, TX

L. Burt Nabors
University of Alabama at Birmingham, Birmingham, AL

Wolfgang Wick
University of Heidelberg, German Cancer Research Center, Heidelberg, Germany

Stephanie L. Pugh
NRG Oncology Statistics and Data Management Center, Philadelphia, PA

Monika Hegg
University Hospital Lausanne, Lausanne, Switzerland

Timothy Cloughesy
University of California, Los Angeles, Los Angeles, CA

Patrick Roth
University Hospital Zurich, Zurich, Switzerland
REFERENCES

DOI: 10.1200/JCO.2016.68.0926; published online ahead of print at www.jco.org on June 13, 2016.
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Reply to F. Felix et al and M.F. Fay et al

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or jco.ascopubs.org/site/ifc.

Caroline Happold
Consulting or Advisory Role: MSD

Thierry Gorlia
No relationship to disclose

Olivier Chinot
Honouraria: AbbVie, Bristol-Myers Squibb
Consulting or Advisory Role: Roche, Ipsen
Research Funding: Roche (Inst)
Patents, Royalties, Other Intellectual Property: Aix Marseille University (Inst)
Travel, Accommodations, Expenses: Servier

Mark R. Gilbert
Honouraria: Merck, Genentech, Roche, AbbVie, Cell Medica, Heron Therapeutics, Wellcome Trust
Consulting or Advisory Role: Merck, Shering Plough, Genentech, Roche, AbbVie, Heron Therapeutics, Cell Medica, Wellcome Trust
Research Funding: GlaxoSmithKline, Merck, Schering Plough, Genentech, Roche
Travel, Accommodations, Expenses: Merck, Schering Plough, Genentech, Roche, AbbVie

L. Burt Nabors
Consulting or Advisory Role: Cavion, ZIOPHARM Oncology, Corte Biosciences

Wolfgang Wick
Honouraria: Prime Oncology, Roche, Genentech, MSD
Consulting or Advisory Role: Roche, Genentech, Celldex
Research Funding: Roche (Inst), Apogenix (Inst), Boehringer Ingelheim (Inst)

Stephanie L. Pugh
No relationship to disclose

Monika Hegi
Consulting or Advisory Role: Roche, Genentech (Inst), MDxHealth (Inst)
Speakers’ Bureau: Roche
Research Funding: Novocure (Inst)
Travel, Accommodations, Expenses: Roche

Timothy Cloughesy
Consulting or Advisory Role: Roche, Genentech, Celgene, Tocagen, VBL Therapeutics, NewGen Therapeutics, Novartis, Upsher-Smith, Proximagen, Lpath, StemCycle, Amgen, CytrRx, Agios, Celldex, Corte Biosciences, Novocure, AbbVie, Oxigene, Nektar, Wellcome Trust, Pfizer

Patrick Roth
Consulting or Advisory Role: Roche, MSD, Molecular Partners

David A. Reardon
Honouraria: AbbVie, Cavion, Genentech, Roche, Merck, Midatech, Momenta Pharmaceuticals, Novartis, Novocure, Regeneron Pharmaceuticals, Stemline Therapeutics, Celldex, Oxigene, Monteris Medical, Bristol-Myers Squibb, Juno Therapeutics, Inovio Pharmaceuticals
Consulting or Advisory Role: Cavion, Genentech, Roche, Merck, Momenta Pharmaceuticals, Novartis, Novocure, Regeneron Pharmaceuticals, Stemline Therapeutics, Bristol-Myers Squibb, Inovio Pharmaceuticals, Juno Therapeutics, Celldex, Oxigene, Monteris Medical, Midatech
Research Funding: Celldex (Inst), Incyte (Inst), Midatech (Inst)

James R. Perry
No relationship to disclose

Minesh P. Mehta
Leadership: Pharmacyclics
Stock or Other Ownership: Pharmacyclics
Consulting or Advisory Role: Novartis, Cavion, Novocure, Varian Medical Systems
Research Funding: Novocure, Cellectar Biosciences

Roger Stupp
Employment: Celgene (I)
Stock or Other Ownership: Celgene (I)
Consulting or Advisory Role: Roche (Inst), Genentech (Inst), Novartis (Inst), Merck Sharp & Dohme (Inst), Debiopharm Group (Inst), UCB (Inst), Celgene (Inst), Pfizer (Inst), Merck (Inst)
Travel, Accommodations, Expenses: Novocure

Michael Weller
Honouraria: Merck Serono, Roche, Eli Lilly, MSD, Immunocellular Therapeutics
Consulting or Advisory Role: Roche, Merck Serono, MagForce AG, Isarna Therapeutics, Celldex, Eli Lilly, Northwest Biotherapeutics, Pfizer, TEVA Pharmaceuticals Industries
Research Funding: Bayer AG (Inst), Isarna Therapeutics (Inst), Roche (Inst), Merck Serono (Inst), PIQUR Therapeutics (Inst), Actelion (Inst), Acceleron Pharma (Inst), Novocure (Inst), AbbVie (Inst)