Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-1279

Carrière, A; Carmona, M C; Fernandez, Y; Rigoulet, M; Wenger, R H; Pénicaud, L; Casteilla, L (2004). Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. Journal of Biological Chemistry, 279(39):40462-40469.

[img]
Preview
PDF
534kB

View at publisher

Abstract

Recent reports emphasize the importance of mitochondria in white adipose tissue biology. In addition to their crucial role in energy homeostasis, mitochondria are the main site of reactive oxygen species generation. When moderately produced, they function as physiological signaling molecules. Thus, mitochondrial reactive oxygen species trigger hypoxia-dependent gene expression. Therefore the present study tested the implication of mitochondrial reactive oxygen species in adipocyte differentiation and their putative role in the hypoxia-dependent effect on this differentiation. Pharmacological manipulations of mitochondrial reactive oxygen species generation demonstrate a very strong and negative correlation between changes in mitochondrial reactive oxygen species and adipocyte differentiation of 3T3-F442A preadipocytes. Moreover, mitochondrial reactive oxygen species positively and specifically control expression of the adipogenic repressor CHOP-10/GADD153. Hypoxia (1% O2) strongly increased reactive oxygen species generation, hypoxia-inducible factor-1 and CHOP-10/GADD153 expression, and inhibited adipocyte differentiation. All of these hypoxia-dependent effects were partly prevented by antioxidants. By using hypoxia-inducible factor-1alpha (HIF-1alpha)-deficient mouse embryonic fibroblasts, HIF-1alpha was shown not to be required for hypoxia-mediated CHOP-10/GADD153 induction. Moreover, the comparison of hypoxia and CoCl2 effects on adipocyte differentiation of wild type or HIF-1alpha deficient mouse embryonic fibroblasts suggests the existence of at least two pathways dependent or not on the presence of HIF-1alpha. Together, these data demonstrate that mitochondrial reactive oxygen species control CHOP-10/GADD153 expression, are antiadipogenic signaling molecules, and trigger hypoxia-dependent inhibition of adipocyte differentiation.

Citations

Altmetrics

Downloads

60 downloads since deposited on 11 Feb 2008
6 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
DDC:570 Life sciences; biology
Language:English
Date:2004
Deposited On:11 Feb 2008 12:22
Last Modified:27 Nov 2013 21:08
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
Publisher DOI:10.1074/jbc.M407258200
PubMed ID:15265861

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page