Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-1288

Crawford, R M; Jovanovic, S; Budas, G R; Davies, A M; Lad, H; Wenger, R H; Robertson, K A; Roy, D J; Ranki, H J; Jovanovic, A (2003). Chronic mild hypoxia protects heart-derived H9c2 cells against acute hypoxia/reoxygenation by regulating expression of the SUR2A subunit of the ATP-sensitive K+ channel. Journal of Biological Chemistry, 278(33):31444-31455.

View at publisher


Chronic exposure to lower oxygen tension may increase cellular resistance to different types of acute metabolic stress. Here, we show that 24-h-long exposure to slightly decreased oxygen tension (partial pressure of oxygen (PO2) of 100 mm Hg instead of normal 144 mm Hg) confers resistance against acute hypoxia/reoxygenation-induced Ca2+ loading in heart-derived H9c2 cells. The number of ATP-sensitive K+ (K(ATP)) channels were increased in cells exposed to PO2 = 100 mm Hg relative to cells exposed to PO2 = 144 mm Hg. This was due to an increase in transcription of SUR2A, a K(ATP) channel regulatory subunit, but not Kir6.2, a K(ATP) channel pore-forming subunit. PO2 = 100 mm Hg also increased the SUR2 gene promoter activity. Experiments with cells overexpressing wild type of hypoxia-inducible factor (HIF)-1alpha and dominant negative HIF-1beta suggested that the HIF-1-signaling pathway did not participate in observed PO2-mediated regulation of SUR2A expression. On the other hand, NADH inhibited the effect of PO2 = 100 mm Hg but not the effect of PO2 = 20 mm Hg. LY 294002 and PD 184 352 prevented PO2-mediated regulation of K(ATP) channels, whereas rapamycin was without any effect. HMR 1098 inhibited the cytoprotective effect of PO2 = 100 mm Hg, and a decrease of PO2 from 144 to 100 mm Hg did not change the expression of any other gene, including those involved in stress and hypoxic response, as revealed by Affymetrix high density oligonucleotide arrays. We conclude that slight hypoxia activates HIF-1alpha-independent signaling cascade leading to an increase in SUR2A protein, a higher density of K(ATP) channels, and a cellular phenotype more resistant to acute metabolic stress.


55 citations in Web of Science®
57 citations in Scopus®
Google Scholar™



98 downloads since deposited on 11 Feb 2008
17 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Deposited On:11 Feb 2008 12:22
Last Modified:05 Apr 2016 12:18
Publisher:American Society for Biochemistry and Molecular Biology
Publisher DOI:10.1074/jbc.M303051200
PubMed ID:12791696

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page