UZH-Logo

Maintenance Infos

The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha.


Gess, B; Hofbauer, K H; Wenger, R H; Lohaus, C; Meyer, H E; Kurtz, A (2003). The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha. FEBS Journal, 270(10):2228-2235.

Abstract

The formation of disulfide bonds in the endoplasmic reticulum requires protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductin 1 (ERO1) that reoxidizes PDI. We report here that the expression of the rat, mouse and human homologues of ERO1-Like protein alpha but not of the isoform ERO1-Lbeta are stimulated by hypoxia in rats vivo and in rat, mouse and human cell cultures. The temporal pattern of hypoxic ERO1-Lalpha induction is very similar to that of genes triggered by the hypoxia inducible transcription factor (HIF-1) and is characteristically mimicked by cobalt and by deferoxamine, but is absent in cells with a defective aryl hydrocarbon receptor translocator (ARNT, HIF-1beta). We speculate from these findings that the expression of ERO1-Lalpha is probably regulated via the HIF-pathway and thus belongs to the family of classic oxygen regulated genes. Activation of the unfolded protein response (UPR) by tunicamycin, on the other hand, strongly induced ERO1-Lbeta and more moderately ERO1-Lalpha expression. The expression of the two ERO1-L isoforms therefore appears to be differently regulated, in the way that ERO1-Lalpha expression is mainly controlled by the cellular oxygen tension, whilst ERO1-Lbeta is triggered mainly by UPR. The physiological meaning of the oxygen regulation of ERO1-Lalpha expression likely is to maintain the transfer rate of oxidizing equivalents to PDI in situations of an altered cellular redox state induced by changes of the cellular oxygen tension.

Abstract

The formation of disulfide bonds in the endoplasmic reticulum requires protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductin 1 (ERO1) that reoxidizes PDI. We report here that the expression of the rat, mouse and human homologues of ERO1-Like protein alpha but not of the isoform ERO1-Lbeta are stimulated by hypoxia in rats vivo and in rat, mouse and human cell cultures. The temporal pattern of hypoxic ERO1-Lalpha induction is very similar to that of genes triggered by the hypoxia inducible transcription factor (HIF-1) and is characteristically mimicked by cobalt and by deferoxamine, but is absent in cells with a defective aryl hydrocarbon receptor translocator (ARNT, HIF-1beta). We speculate from these findings that the expression of ERO1-Lalpha is probably regulated via the HIF-pathway and thus belongs to the family of classic oxygen regulated genes. Activation of the unfolded protein response (UPR) by tunicamycin, on the other hand, strongly induced ERO1-Lbeta and more moderately ERO1-Lalpha expression. The expression of the two ERO1-L isoforms therefore appears to be differently regulated, in the way that ERO1-Lalpha expression is mainly controlled by the cellular oxygen tension, whilst ERO1-Lbeta is triggered mainly by UPR. The physiological meaning of the oxygen regulation of ERO1-Lalpha expression likely is to maintain the transfer rate of oxidizing equivalents to PDI in situations of an altered cellular redox state induced by changes of the cellular oxygen tension.

Citations

72 citations in Web of Science®
76 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

77 downloads since deposited on 11 Feb 2008
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2003
Deposited On:11 Feb 2008 12:22
Last Modified:05 Apr 2016 12:18
Publisher:Wiley-Blackwell
ISSN:0014-2956
Publisher DOI:https://doi.org/10.1046/j.1432-1033.2003.03590.x
PubMed ID:12752442

Download

[img]
Preview
Filetype: PDF
Size: 373kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations