UZH-Logo

Maintenance Infos

Identification of a new gene product (diphor-1) regulated by dietary phosphate.


Custer, M; Spindler, B; Verrey, F; Murer, H; Biber, J (1997). Identification of a new gene product (diphor-1) regulated by dietary phosphate. American Journal of Physiology: Renal Physiology, 273(5 Pt 2):F801-F806.

Abstract

Chronic restriction of dietary Pi elicits an increased reabsorption of Pi in the kidney proximal tubules, which involves a stimulation of apical Na-Pi cotransport. This adaptation is in part a direct cellular response of which the mechanism(s) are poorly understood. In this study, the impact of dietary Pi restriction on the differential expression of rat kidney cortex mRNAs was visualized to identify gene products regulated by the Pi status. When kidney cortex mRNAs of rats fed a low- or a high-Pi diet were compared by differential display-polymerase chain reaction (DD-PCR), thirty modulated cDNA bands were observed, of which four were confirmed as being regulated. We focused on one of the upregulated bands, dietary Pi-regulated RNA-1 (diphor-1). A cDNA containing an open reading frame encoding a 52-kDa protein was cloned by library screening. Diphor-1 exhibits a high degree of identity to the Na/H exchanger regulatory factor and to a tyrosine kinase activating protein. Highest expression of diphor-1 mRNA was detected in the kidney (proximal tubules) and in small intestine. Expression experiments showed that diphor-1 specifically increases Na-Pi cotransport in oocytes of Xenopus laevis coinjected with renal type II Na-Pi contransporter cRNA. Further characterizations of diphor-1 will show whether diphor-1 is primarily or secondarily involved in the response to dietary Pi.

Abstract

Chronic restriction of dietary Pi elicits an increased reabsorption of Pi in the kidney proximal tubules, which involves a stimulation of apical Na-Pi cotransport. This adaptation is in part a direct cellular response of which the mechanism(s) are poorly understood. In this study, the impact of dietary Pi restriction on the differential expression of rat kidney cortex mRNAs was visualized to identify gene products regulated by the Pi status. When kidney cortex mRNAs of rats fed a low- or a high-Pi diet were compared by differential display-polymerase chain reaction (DD-PCR), thirty modulated cDNA bands were observed, of which four were confirmed as being regulated. We focused on one of the upregulated bands, dietary Pi-regulated RNA-1 (diphor-1). A cDNA containing an open reading frame encoding a 52-kDa protein was cloned by library screening. Diphor-1 exhibits a high degree of identity to the Na/H exchanger regulatory factor and to a tyrosine kinase activating protein. Highest expression of diphor-1 mRNA was detected in the kidney (proximal tubules) and in small intestine. Expression experiments showed that diphor-1 specifically increases Na-Pi cotransport in oocytes of Xenopus laevis coinjected with renal type II Na-Pi contransporter cRNA. Further characterizations of diphor-1 will show whether diphor-1 is primarily or secondarily involved in the response to dietary Pi.

Citations

65 citations in Web of Science®
65 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

97 downloads since deposited on 11 Feb 2008
49 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 November 1997
Deposited On:11 Feb 2008 12:22
Last Modified:05 Apr 2016 12:18
Publisher:American Physiological Society
ISSN:0002-9513
Related URLs:http://ajprenal.physiology.org/cgi/content/full/273/5/F801
PubMed ID:9374845

Download

[img]
Preview
Filetype: PDF
Size: 373kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations