Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Murer, H; Hernando, N; Forster, I C; Biber, J (2000). Proximal tubular phosphate reabsorption: molecular mechanisms. Physiological Reviews, 80(4):1373-1409.

Full text not available from this repository.

Abstract

Renal proximal tubular reabsorption of P(i) is a key element in overall P(i) homeostasis, and it involves a secondary active P(i) transport mechanism. Among the molecularly identified sodium-phosphate (Na/P(i)) cotransport systems a brush-border membrane type IIa Na-P(i) cotransporter is the key player in proximal tubular P(i) reabsorption. Physiological and pathophysiological alterations in renal P(i) reabsorption are related to altered brush-border membrane expression/content of the type IIa Na-P(i) cotransporter. Complex membrane retrieval/insertion mechanisms are involved in modulating transporter content in the brush-border membrane. In a tissue culture model (OK cells) expressing intrinsically the type IIa Na-P(i) cotransporter, the cellular cascades involved in "physiological/pathophysiological" control of P(i) reabsorption have been explored. As this cell model offers a "proximal tubular" environment, it is useful for characterization (in heterologous expression studies) of the cellular/molecular requirements for transport regulation. Finally, the oocyte expression system has permitted a thorough characterization of the transport characteristics and of structure/function relationships. Thus the cloning of the type IIa Na-P(i )cotransporter (in 1993) provided the tools to study renal brush-border membrane Na-P(i) cotransport function/regulation at the cellular/molecular level as well as at the organ level and led to an understanding of cellular mechanisms involved in control of proximal tubular P(i) handling and, thus, of overall P(i) homeostasis.

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
DDC:570 Life sciences; biology
Language:English
Date:1 October 2000
Deposited On:11 Feb 2008 12:22
Last Modified:27 Nov 2013 17:21
Publisher:American Physiological Society
ISSN:0031-9333
Related URLs:http://physrev.physiology.org/cgi/content/full/80/4/1373
PubMed ID:11015617
Citations:Web of Science®. Times Cited: 295
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page