UZH-Logo

Maintenance Infos

A molecular view of proximal tubular inorganic phosphate (Pi) reabsorption and of its regulation.


Murer, H; Biber, J (1997). A molecular view of proximal tubular inorganic phosphate (Pi) reabsorption and of its regulation. Pflügers Archiv: European Journal of Physiology (Pflugers Archiv), 433(4):379-389.

Abstract

In recent years, two mammalian proximal tubular brush border membrane Na/Pi cotransporters (types I and II) have been structurally identified by expression cloning techniques. Oocyte expression studies have shown that only the transport characteristics of the type II transporter correspond to the well-known properties of proximal tubular brush border membrane of Pi transport. In studies on physiological regulation by hormonal and non-hormonal factors a direct involvement and determining role of the type II transporter has been documented. Most interestingly, specific membrane retrieval/insertion phenomena participate in acute (minutes/hours) adjustments of brush border membrane Na/Pi cotransport rates; for chronic (hours/days) alterations also specific resynthesis/degradation processes participate. In pathophysiological alterations (e.g. in X-linked hypophosphataemia and in heavy metal-induced nephrotoxicity) the expression of the type II Na/Pi cotransporters is reduced and explains the observed phosphaturia.

In recent years, two mammalian proximal tubular brush border membrane Na/Pi cotransporters (types I and II) have been structurally identified by expression cloning techniques. Oocyte expression studies have shown that only the transport characteristics of the type II transporter correspond to the well-known properties of proximal tubular brush border membrane of Pi transport. In studies on physiological regulation by hormonal and non-hormonal factors a direct involvement and determining role of the type II transporter has been documented. Most interestingly, specific membrane retrieval/insertion phenomena participate in acute (minutes/hours) adjustments of brush border membrane Na/Pi cotransport rates; for chronic (hours/days) alterations also specific resynthesis/degradation processes participate. In pathophysiological alterations (e.g. in X-linked hypophosphataemia and in heavy metal-induced nephrotoxicity) the expression of the type II Na/Pi cotransporters is reduced and explains the observed phosphaturia.

Citations

84 citations in Web of Science®
86 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 February 1997
Deposited On:11 Feb 2008 12:22
Last Modified:05 Apr 2016 12:18
Publisher:Springer
ISSN:0031-6768
Publisher DOI:10.1007/s004240050292
Related URLs:http://www.springerlink.com/content/1eq77xa1c8fjyy3a/
PubMed ID:9000416

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations