UZH-Logo

Maintenance Infos

Identification of a cDNA/protein leading to an increased Pi-uptake in Xenopus laevis oocytes.


Norbis, F; Boll, M; Stange, G; Markovich, D; Verrey, F; Biber, J; Murer, H (1997). Identification of a cDNA/protein leading to an increased Pi-uptake in Xenopus laevis oocytes. Journal of Membrane Biology, 156(1):19-24.

Abstract

In a previous report we documented an increased Na(+)-dependent transport of inorganic phosphate (P(i)) in Xenopus laevis oocytes injected with mRNA isolated from rabbit duodenum (Yagci et al., Pfluegers Arch. 422:211-216, 1992; ref 24). In the present study we have used expression cloning in oocytes to search for the cDNA/mRNA involved in this effect. The identified cDNA (provisionally named PiUS; for P(i)-uptake stimulator) lead to a 3-4-fold stimulation of Na(+)-dependent P(i)-uptake (10ng cRNA injected, 3-5 days of expression). Na(+)-independent uptake of P(i) was also affected but transport of sulphate and L-arginine (in the presence or absence of sodium) remained unchanged. The apparent K(m)-values for the induced Na(+)-dependent uptake were 0.26 +/- 0.04 mM for P(i) and 14.8 +/- 3.0 mM for Na+. The 1796 bp cDNA codes for a protein of 425 amino acids. Hydropathy analysis suggests a lack of transmembrane segments. In vitro translation resulted in a protein of 60 kDa and provided no evidence of glycosylation. In Northern blots a mRNA of approximately 2 kb was recognized in various tissues including different intestinal segments, kidney cortex, kidney medulla, liver and heart. Homology searches showed no similarity to proteins involved in membrane transport and its control. In conclusion, we have cloned from a rabbit small intestinal cDNA library a novel cDNA encoding a protein stimulating P(i)-uptake into Xenopus laevis oocytes, but which is not a P(i)-transporter itself.

Abstract

In a previous report we documented an increased Na(+)-dependent transport of inorganic phosphate (P(i)) in Xenopus laevis oocytes injected with mRNA isolated from rabbit duodenum (Yagci et al., Pfluegers Arch. 422:211-216, 1992; ref 24). In the present study we have used expression cloning in oocytes to search for the cDNA/mRNA involved in this effect. The identified cDNA (provisionally named PiUS; for P(i)-uptake stimulator) lead to a 3-4-fold stimulation of Na(+)-dependent P(i)-uptake (10ng cRNA injected, 3-5 days of expression). Na(+)-independent uptake of P(i) was also affected but transport of sulphate and L-arginine (in the presence or absence of sodium) remained unchanged. The apparent K(m)-values for the induced Na(+)-dependent uptake were 0.26 +/- 0.04 mM for P(i) and 14.8 +/- 3.0 mM for Na+. The 1796 bp cDNA codes for a protein of 425 amino acids. Hydropathy analysis suggests a lack of transmembrane segments. In vitro translation resulted in a protein of 60 kDa and provided no evidence of glycosylation. In Northern blots a mRNA of approximately 2 kb was recognized in various tissues including different intestinal segments, kidney cortex, kidney medulla, liver and heart. Homology searches showed no similarity to proteins involved in membrane transport and its control. In conclusion, we have cloned from a rabbit small intestinal cDNA library a novel cDNA encoding a protein stimulating P(i)-uptake into Xenopus laevis oocytes, but which is not a P(i)-transporter itself.

Citations

28 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 March 1997
Deposited On:11 Feb 2008 12:22
Last Modified:05 Apr 2016 12:18
Publisher:Springer
ISSN:0022-2631
Publisher DOI:https://doi.org/10.1007/s002329900183
Related URLs:http://www.springerlink.com/content/jhf7934xwuc01w98/
PubMed ID:9070460

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations