Loss of B Cells in Patients with Heterozygous Mutations in IKAROS

Kuehn, Hye Sun; Boisson, Bertrand; Cunningham-Rundles, Charlotte; Reichenbach, Janine; Stray-Pedersen, Asbjørg; Gelfand, Erwin W; Maffucci, Patrick; Pierce, Keith R; Abbott, Jordan K; Voelkerding, Karl V; South, Sarah T; Augustine, Nancy H; Bush, Jeana S; Dolen, William K; Wray, Betty B; Itan, Yuval; Cobat, Aurelie; Sorte, Hanne Sørno; Ganesan, Sundar; Prader, Seraina; Martins, Thomas B; Lawrence, Monica G; Orange, Jordan S; Calvo, Katherine R; Niemela, Julie E; Casanova, Jean-Laurent; Fleisher, Thomas A; Hill, Harry R; Kumánovics, Attila; Conley, Mary Ellen; et al

Abstract: BACKGROUND: Common variable immunodeficiency (CVID) is characterized by late-onset hypogammaglobulinemia in the absence of predisposing factors. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells. METHODS: We used whole-exome sequencing and array-based comparative genomic hybridization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility-shift assay (EMSA) and confocal microscopy. Flow cytometry was used to analyze peripheral-blood lymphocytes and bone marrow aspirates. RESULTS: Six different heterozygous mutations in IKZF1, the gene encoding the transcription factor IKAROS, were identified in 29 persons from six families. In two families, the mutation was a de novo event in the proband. All the mutations, four amino acid substitutions, an intragenic deletion, and a 4.7-Mb multigene deletion involved the DNA-binding domain of IKAROS. The proteins bearing missense mutations failed to bind target DNA sequences on EMSA and confocal microscopy; however, they did not inhibit the binding of wild-type IKAROS. Studies in family members showed progressive loss of B cells and serum immunoglobulins. Bone marrow aspirates in two patients had markedly decreased early B-cell precursors, but plasma cells were present. Acute lymphoblastic leukemia developed in 2 of the 29 patients. CONCLUSIONS: Heterozygous mutations in the transcription factor IKAROS caused an autosomal dominant form of CVID that is associated with a striking decrease in B-cell numbers. (Funded by the National Institutes of Health and others.).

DOI: https://doi.org/10.1056/NEJMoa1512234
DOI: https://doi.org/10.1056/NEJMoa1512234
Loss of B Cells in Patients with Heterozygous Mutations in IKAROS

BACKGROUND

Common variable immunodeficiency (CVID) is characterized by late-onset hypogammaglobulinemia in the absence of predisposing factors. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells.

METHODS

We used whole-exome sequencing and array-based comparative genomic hybridization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility-shift assay (EMSA) and confocal microscopy. Flow cytometry was used to analyze peripheral-blood lymphocytes and bone marrow aspirates.

RESULTS

Six different heterozygous mutations in IKZF1, the gene encoding the transcription factor IKAROS, were identified in 29 persons from six families. In two families, the mutation was a de novo event in the proband. All the mutations, four amino acid substitutions, an intragenic deletion, and a 4.7-Mb multigene deletion involved the DNA-binding domain of IKAROS. The proteins bearing missense mutations failed to bind target DNA sequences on EMSA and confocal microscopy; however, they did not inhibit the binding of wild-type IKAROS. Studies in family members showed progressive loss of B cells and serum immunoglobulins. Bone marrow aspirates in two patients had markedly decreased early B-cell precursors, but plasma cells were present. Acute lymphoblastic leukemia developed in 2 of the 29 patients.

CONCLUSIONS

Heterozygous mutations in the transcription factor IKAROS caused an autosomal dominant form of CVID that is associated with a striking decrease in B-cell numbers. (Funded by the National Institutes of Health and others.)
The genetic cause of many primary immunodeficiencies remains unknown. Common variable immunodeficiency (CVID) comprises a heterogeneous group of disorders characterized by the late onset of recurrent infections, hypogammaglobulinemia, and poor antibody response to vaccine antigens that cannot be explained by previous exposures, treatment, or infections. Some patients also have autoimmunity, granulomatous disease, or cancer.\(^1,2\)

Genomic approaches, including whole-exome sequencing and high-resolution array-based comparative genomic hybridization (CGH), have accelerated the identification of genetic causes in patients with primary immunodeficiencies, including CVID.\(^3,5\) Mutations in several genes, including ICOS, CD19, CD81, CD20, CD21, TWEAK, CTLA4, LRBA, GATA2, CXCL12, NFKB1, and NFKB2, have been associated with a CVID-like phenotype in a small proportion of patients.\(^6,7\) A number of these new disorders are autosomal dominant with incomplete penetrance. Often, there is marked variation in the clinical severity, even among family members with the same genetic defect.\(^1,2\) We used whole-exome sequencing and high-resolution array-based CGH to evaluate a subset of patients with CVID and low B-cell numbers.

METHODS

STUDY PARTICIPANTS

All study participants or their parents provided written informed consent. The study was approved by the local review boards. The probands in this study, Patients A1, B5, C1, D2, E1, and F2, were first evaluated for immunodeficiency at 3 to 32 years of age, after recurrent or severe bacterial infections that were often due to Streptococcus pneumoniae. All six patients had hypogammaglobulinemia and decreased numbers of B cells, findings consistent with the diagnosis of CVID (Table 1, and Table S1 in the Supplementary Appendix, available with the full text of this article at NEJM.org). CVID was subsequently diagnosed in Patients A2, B1, B6, C2, C3, F1, F3, and F4. After IKZF1 mutations had been identified in the probands, they were detected in additional affected family members. Patients B1, B2, B3, F5, and F6 had a history of severe bacterial infections. Patients B4, F1, and F6 had recurrent sinusitis, bronchitis, or both. Patient A2 had had two episodes of idiopathic thrombocytopenic purpura. B-cell acute lymphoblastic leukemia (ALL) developed in Patients B7 and F12 at 3 and 5 years of age, respectively. Patient B1 died from pneumonia at 74 years of age, and Patient B7 died from a relapse of B-cell ALL at 5 years of age. No patients showed evidence of increased susceptibility to viral or fungal infections. Most of the patients with hypogammaglobulinemia have done relatively well, despite inadequate treatment with gamma globulin in many of them. Additional clinical data and the methods used for genetic analysis, functional studies, and flow cytometry are described in the Supplementary Appendix.

RESULTS

MUTATION DETECTION

Whole-exome sequencing was performed on DNA samples from Patients A1 and A2 and the unaffected mother of Patient A1; Patients B1 and B6; Patients C1, C2, and C3 and the healthy daughter of Patient C1; and Patients D2 and E1. Mutations in 269 genes known to be associated with immunodeficiency (Table S2 in the Supplementary Appendix), including BTK (encoding Bruton’s tyrosine kinase), GATA2, CTLA4, and TNFRS13B (encoding TACI [transmembrane activator and calcium-modulator and cyclophilin ligand interactor]), were not identified in any of these persons. A G→T substitution at c.485 in Family A resulted in a substitution of leucine for arginine at codon 162 (R162L) in IKZF1, the gene encoding the transcription factor IKAROS. A G→A substitution at c.485 in Family B resulted in a substitution of glutamine for arginine (R162Q) at the same mutated codon found in Family A. In Family C, an A→G substitution in IKZF1 at c.500 was found, resulting in a substitution of glutamine for histidine at codon 167 (H167R). A G→A substitution at c.551 in Family D resulted in a substitution of glutamine for histidine at codon 184 (R184Q). Sanger sequencing confirmed the mutations in the patients and detected mutations in additional affected family members. The mutations were de novo in Patients A1 and C1; however, Patient D1, the asymptomatic mother of Patient D2, carried the same mutation as her daughter (Fig. 1).
Table 1. Clinical and Laboratory Characteristics of 29 Patients with Heterozygous IKAROS Mutations.

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Clinical Manifestations</th>
<th>Age at Onset Immunoglobulin</th>
<th>B Cells</th>
<th>T Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>yr</td>
<td>mg/dl</td>
<td>% (absolute lymphocyte count/mm³)</td>
</tr>
<tr>
<td>A1</td>
<td>Infections</td>
<td>9</td>
<td><33</td>
<td><7</td>
</tr>
<tr>
<td>A2</td>
<td>ITP</td>
<td>3</td>
<td>727</td>
<td>7</td>
</tr>
<tr>
<td>B1</td>
<td>Infections</td>
<td>12</td>
<td>386</td>
<td>30</td>
</tr>
<tr>
<td>B2</td>
<td>Infections</td>
<td>6</td>
<td>461</td>
<td>36</td>
</tr>
<tr>
<td>B3</td>
<td>Infections</td>
<td>10</td>
<td>283</td>
<td>15</td>
</tr>
<tr>
<td>B4</td>
<td>Infections</td>
<td>43</td>
<td>433</td>
<td>19</td>
</tr>
<tr>
<td>B5</td>
<td>Infections</td>
<td>3</td>
<td>1430</td>
<td>21</td>
</tr>
<tr>
<td>B6</td>
<td>Infections</td>
<td>1</td>
<td>1260</td>
<td>12</td>
</tr>
<tr>
<td>B7</td>
<td>B-cell ALL</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C1</td>
<td>Infections</td>
<td>30</td>
<td>887</td>
<td>73</td>
</tr>
<tr>
<td>C2</td>
<td>Infections</td>
<td>13</td>
<td>1052</td>
<td>157</td>
</tr>
<tr>
<td>C3</td>
<td>Infections</td>
<td>4</td>
<td>1030</td>
<td>12</td>
</tr>
<tr>
<td>D1</td>
<td>Asymptomatic</td>
<td>—</td>
<td>637</td>
<td>5</td>
</tr>
<tr>
<td>D2</td>
<td>Infections</td>
<td>9</td>
<td>42</td>
<td><1</td>
</tr>
<tr>
<td>E1</td>
<td>Infections</td>
<td>3</td>
<td>860</td>
<td><1</td>
</tr>
<tr>
<td>E2</td>
<td>Asymptomatic</td>
<td>—</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F1</td>
<td>Infections</td>
<td>57</td>
<td>113</td>
<td><6</td>
</tr>
<tr>
<td>F2</td>
<td>Infections</td>
<td>29</td>
<td><7</td>
<td><4</td>
</tr>
<tr>
<td>F3</td>
<td>Infections</td>
<td>21</td>
<td>1010</td>
<td><6</td>
</tr>
<tr>
<td>F4</td>
<td>Infections</td>
<td>22</td>
<td>1010</td>
<td><6</td>
</tr>
<tr>
<td>F5</td>
<td>Infections</td>
<td>31</td>
<td>382</td>
<td>29</td>
</tr>
<tr>
<td>F6</td>
<td>Infections</td>
<td>19</td>
<td>148</td>
<td>32</td>
</tr>
<tr>
<td>F7</td>
<td>Asymptomatic</td>
<td>—</td>
<td>528</td>
<td><6</td>
</tr>
<tr>
<td>F8</td>
<td>Asymptomatic</td>
<td>—</td>
<td>789</td>
<td>64</td>
</tr>
<tr>
<td>F9</td>
<td>Asymptomatic</td>
<td>—</td>
<td>844</td>
<td>28</td>
</tr>
<tr>
<td>F10</td>
<td>Asymptomatic</td>
<td>—</td>
<td>606</td>
<td>118</td>
</tr>
<tr>
<td>F11</td>
<td>Asymptomatic</td>
<td>—</td>
<td>541</td>
<td>120</td>
</tr>
<tr>
<td>F12</td>
<td>B-cell ALL Infections</td>
<td>5</td>
<td>590</td>
<td>36</td>
</tr>
<tr>
<td>F13</td>
<td>Asymptomatic</td>
<td>—</td>
<td>629</td>
<td>28</td>
</tr>
</tbody>
</table>

* The most recent, comprehensive, and representative laboratory data are shown for each patient; complete laboratory data are provided in Table S1 in the Supplementary Appendix. Numbers in italics indicate values above the normal range, and numbers in boldface indicate values below the normal range for age-matched controls in the laboratory in which the study was performed: the National Institutes of Health Clinical Center (Families A and C), University Children’s Hospital Zurich (Family B), Quest Diagnostics (Family D), Oslo University Hospital and University of Oslo (Family E), and ARUP Laboratories (Family F). ALL denotes acute lymphoblastic leukemia, CVID common variable immunodeficiency, ITP idiopathic thrombocytopenic purpura, and NA not available.

† CD27+ B cells are expressed as the percentage among CD19+ B cells. Values are included only if at least 50 CD19+ B cells were analyzed.

‡ The patient was receiving IgG replacement therapy.
Whole-exome sequencing and customized array-based CGH were performed on a DNA sample from Patient E1. In silico copy-number variation analysis of data from whole-exome sequencing showed an IKZF1 intragenic heterozygous deletion. Sanger sequencing identified the exact mutation breakpoints (Fig. S1 in the Supplementary Appendix). This 16.8-kb deletion (Chr7 [human assembly GRCh37]:g.50435843_50452713del; NM_006060.5(IKZF1)c.1618388_589+2308del) results in the in-frame deletion of IKZF1 exons 4 and 5. The same heterozygous deletion was detected in Patient E2 (the son of Patient E1) by means of CGH.

CGH analysis of DNA samples from Patient F1, her husband, and her four children revealed a 4.7-Mb heterozygous deletion on chromosome 7 in Patient F1 and three of her children (Patients F3, F4, and F5). The 7p12.3-p12.1 deletion involves 11 genes (ABCA13, CDC14C, WWC2, ZBP8, C7orf7, IKZF1, FIGNL1, DCC, GRB10, COBL, and POM121L12). Only IKZF1 is known to play a role in B-cell development and function. Multiplex ligation-dependent probe amplification revealed the IKZF1 deletion in nine additional family members (Fig. 1). No germline constitutional deletion of this region was reported in more than 8000 healthy controls. However, patients with complex genetic syndromes associated with total or subtotal chromosome 7p deletions, including one child with Greig cephalopolysyndactyly and ALL, have been described.

IKAROS is a member of a family of hematopoietic zinc-finger transcription factors. It was first identified on the basis of its ability to bind regulatory regions of genes encoding terminal deoxynucleotidyl transferase (TdT) and CD3δ. It also binds pericentromeric DNA as part of the NuRD (nucleosome remodeling and histone deacetylase) complex and can both enhance and repress gene transcription. The four N-terminal zinc fingers of IKAROS form the DNA-binding domain, and the two C-terminal zinc fingers act as a dimerization domain. Multiple splice variants of IKAROS are produced; those that have lost the DNA-binding zinc fingers but have retained the dimerization zinc fingers act as dominant negative regulators of IKAROS family members.

The missense mutations in Families A, B, and C were in zinc finger 2, and the mutation in Family D was in zinc finger 3; these two highly conserved domains (Fig. S1 in the Supplementary Appendix) are essential for DNA binding. The deletion in Patient E1 resulted in the loss of zinc fingers 1, 2, and 3. Previously published structural studies indicate that missense mutations R162L, R162Q, and R184Q occur at DNA contact residues, whereas the H167R mutation involves one of the C2H2 zinc-finger canonical histidines (see Fig. S2 in the Supplementary Appendix for the structure of IKAROS). Furthermore, these four mutations are predicted to be highly damaging to protein function (Fig. S3 in the Supplementary Appendix). These point mutations were not seen in more than 64,000 genomes included in the 1000 Genomes Project and the Exome Aggregation Consortium (ExAC) database. No premature stop codons in IKZF1 were found in these databases, and the few missense mutations reported were either very rare or predicted to be benign. In addition, IKZF1 is under strong purifying selection (Fig. S4 in the Supplementary Appendix), meaning that persons carrying dysfunctional variants tend not to survive to reproductive age. Finally, DNA from 132 additional patients with CVID, including 21 patients with low B-cell numbers, was analyzed for mutations in IKZF1 by means of whole-exome sequencing or Sanger sequencing of exons, but no additional mutations were identified.

FUNCTIONAL ANALYSIS OF IKZF1 MUTATIONS

Flow cytometry showed that the amount of IKAROS in T cells and B cells from the study participants with amino acid substitutions was equal to that in T cells and B cells from controls, whereas T cells and B cells from the participants with the large deletion had approximately half the normal amount of IKAROS (Fig. S5 in the Supplementary Appendix). To examine the stability of the proteins resulting from the four missense mutations in IKZF1 (R162L, R162Q, H167R, and R184Q) and the ability of these proteins to dimerize with wild-type IKAROS and enter the nucleus, we transfected HEK293T cells with wild-type and mutant expression vectors. Western blot analysis of extracts from the cytoplasm and nucleus of the transfected cells showed that these mutant proteins were stable.
were dimerized with wild-type IKAROS, and were able to migrate to the nucleus (Fig. S6 in the Supplementary Appendix). The nuclear extracts from transfected cells were used in an electrophoretic mobility-shift assay (EMSA) to evaluate the ability of the mutant proteins to bind an

The New England Journal of Medicine

Downloaded from nejm.org at HAUPTBIBLIOTHEK UNIV ZUERICH on February 6, 2017. For personal use only. No other uses without permission. Copyright © 2016 Massachusetts Medical Society. All rights reserved.
IKAROS consensus-binding sequence (IK-bs4)15 and a probe from the pericentromeric region of human chromosome 8 (γSat8).19 The four proteins resulting from missense mutations failed to bind these probes (Fig. S7A and S7B in the Supplementary Appendix). To determine whether the amino acid substitutions resulted in a dominant negative effect and to mimic the heterozygous state, we performed EMSAs with nuclear extracts from human embryonic kidney 293T (HEK293T) cells transfected with vector expressing wild-type IKAROS or vectors expressing 50% wild-type and 50% mutant IKAROS. DNA binding was reduced by 38 to 74% in the cells transfected with the 50% wild-type and 50% mutant vectors, as compared with the cells transfected with 100% wild-type IKAROS. The combined results of the EMSAs and confocal microscopy are consistent with the hypothesis that the four proteins resulting from missense mutations do not have a dominant negative effect.

To compare the mutations found in these patients with previously described mutations in \textit{IKZF1}, we performed an EMSA and confocal microscopy with the use of vectors expressing N159A, an experimentally generated in vitro mutation15; H191R, an ethylnitrosourea-induced murine mutation20; and Y210C, a mutation in zinc finger 4 that was identified in a critically ill premature infant with pancytopenia.21 The abnormal EMSA results and perinuclear localization for the N159A and H191R mutations were similar to the findings with the R162L, R162Q, H167R, and R184Q mutations. The Y210C mutation showed decreased but not absent DNA binding on an EMSA. Primary T cells from the infant, who was heterozygous for the Y210C allele, were reported to show abnormal subcellular localization of IKAROS; however, we saw normal pericentromeric localization of the protein with the Y210C mutation when expressed alone or in the presence of the wild-type allele in transfected NIH-3T3 cells (Fig. S9 in the Supplementary Appendix).

LABORATORY FINDINGS

There was some variation in laboratory findings among the study participants. However, 26 of the 27 patients for whom pretreatment data were available had a marked decrease in at least two of the three major immunoglobulin isotypes (IgG, IgM, and IgA); 23 had a decrease in all three isotypes, and 6 with panhypogammaglobulinemia had a serum IgG level of less than 150 mg per deciliter before treatment with gamma globulin was started (Table 1). Only 1 patient (at 5 years of age) had normal findings for the three major immunoglobulin isotypes. Assessment of antibodies to vaccine antigens, which was performed in 8 patients, showed an absence of antibodies in 6 patients, progressive loss of antibodies in 1, and normal titers in 1. At their

Figure 1 (facing page). Mutation in IKAROS (IKZF1) in Families with Common Variable Immunodeficiency. Panel A shows the pedigrees of the six families. Circles and squares denote female and male family members, respectively. Black symbols represent family members with a heterozygous mutation in \textit{IKZF1}, and slashes indicate deceased family members. In Family F, the diamond with the number in it indicates the number of family members (male or female) who were not screened. Arrows indicate the probands. The specific complementary DNA (IKZF1 transcript variant NM_006060) and protein mutation are indicated above each pedigree. Mut denotes mutation, and WT wild type. Panel B, top, shows the exon structure of full-length IKAROS isoform 1 in light-gray boxes (IKZF1 transcript variant NM_006060), with the zinc fingers (ZFs) indicated in dark-gray boxes. The sites of the mutations in Families A, B, C, and D and the deletion of c.161-8388_589+2308del in \textit{IKZF1} in Family E are shown. The lower part of the panel shows a schematic representation of the 4.7-Mb deletion on the short arm of chromosome 7 (7p12.3-p12.1) in Family F, with the deletion indicated in red.
most recent evaluation, 14 patients had a CD19+ cell count of less than 1% in peripheral blood; however, CD19+CD27+ memory B cells were readily detectable in the 14 patients in whom they were analyzed. When plotted against age, the serum IgG level showed a progressive decline (Fig. 2). A similar finding was noted when the number of CD19+ B cells was evaluated (Table 1, and Table S1 in the Supplementary Appendix).

T-cell studies showed a consistent increase in CD8+ T cells with reversed CD4:CD8 ratios in 10 of 13 participants with DNA-binding defects in IKAROS (e.g., amino acid substitutions or exon 4 and 5 deletion) and in 3 of 13 patients with complete deletion of IKZF1 (P = 0.01 on the basis of a two-tailed Fisher’s exact test) (Table 1 and Fig. 2, and Table S1 in the Supplementary Appendix). The CD8+ T cells were predominantly naive cells (CD62L+CD45RA+) and central memory cells (CD62L+CD45RA−) in the 6 patients who were assessed for these markers. Both CD4+ and CD8+ cells appeared to be polyclonal on cytometric analysis of Vβ flow (Fig. S10 in the Supplementary Appendix) and studies of T-cell receptor gamma-chain rearrangement. Proliferation of T-cells and Fas-mediated apoptosis were similar in patients and controls (Fig. S11 in the Supplementary Appendix). Polymerase-chain-reaction assays for cytomegalovirus and Epstein–Barr virus were negative in the 6 patients with reversed CD4:CD8 ratios who were evaluated. The number of natural killer cells varied among these persons, particularly during childhood. However, 13 of the 14 study participants who were older than 25 years of age were clinically symptomatic, and all these adults had laboratory evidence of immunodeficiency. Some of the children and adults had a surprisingly mild clinical course despite low concentrations of serum immunoglobulins, decreased numbers of B cells, and inadequate treatment with gamma globulin. One adult patient (D1) and several chil-

DISCUSSION

CVID is characterized by late-onset hypogammaglobulinemia and a poor antibody response to infectious and vaccine antigens. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells. This study documents the progressive loss of serum immunoglobulins and B cells in a subset of patients with CVID associated with heterozygous mutations in IKZF1. Clinical and laboratory findings varied among these persons, particularly during childhood. However, 13 of the 14 study participants who were older than 25 years of age were clinically symptomatic, and all these adults had laboratory evidence of immunodeficiency. Some of the children and adults had a surprisingly mild clinical course despite low concentrations of serum immunoglobulins, decreased numbers of B cells, and inadequate treatment with gamma globulin. One adult patient (D1) and several chil-

Figure 2 (facing page). Low Serum IgG Levels and Progressive Loss of Peripheral-Blood B-Cell Counts in Patients with IKZF1 Mutations.

The symbols represent individual family members, with black symbols indicating those who were asymptomatic; gray shading represents mean values ±1 SD in healthy controls. Only patients who were not being treated with gamma globulin are included in the data shown for IgG levels.
Children with IKAROS deficiency were asymptomatic, which suggests that penetrance is incomplete (Fig. S12 in the Supplementary Appendix); however, clinical manifestations may appear as late as the sixth decade of life. Nevertheless, several observations indicate that the clinical penetrance of \(\text{IKZF1}\) mutations is very high. The occurrence of de novo mutations in two of the six kindreds and the strong purifying (or negative) selection for \(\text{IKZF1}\) indicate that there is selection against these mutations in evolution. In addition, \(\text{IKZF1}\) ranks second to \(\text{RPSA}\) (and higher than \(\text{CTLA4}\) and \(\text{GATA2}\)) in terms of negative selection among the 15 known autosomal dominant primary immunodeficiencies caused by haploinsufficiency.24-27

The mechanism of dominance in Family F is most likely haploinsufficiency on the basis of the complete deletion of one of the \(\text{IKZF1}\) alleles; however, the other genes included in the dele-
tion may contribute to the phenotype. The situation is also complex in Families A, B, C, and D, in which the mutant allele results in a stable protein that is able to dimerize with wild-type IKAROS but is unable to bind target DNA (Fig. S6 and S7, respectively, in the Supplementary Appendix). On the basis of previously reported data, \(^{21}\) IKAROS protein lacking zinc fingers 1, 2, and 3, as in Family E, behaves similarly to the missense proteins in Families A through D. Because IKAROS functions as a dimer, one might expect these proteins to act in a dominant negative fashion, similar to that recently reported for patients with heterozygous mutations in the DNA-binding domain of E47, \(^{28}\) another transcription factor required for B-cell development. However, both EMSAs and confocal microscopy showed that the mutant proteins do not inhibit the DNA binding of wild-type IKAROS (Fig. S7). Furthermore, the clinical and laboratory findings in the patients with defects restricted to the DNA-binding domain of IKAROS are similar to those seen in the patients with complete deletion of the gene.

In contrast, the patients with mutations in the DNA-binding domain of IKAROS had a more striking increase in the number of CD8+ cells than did the patients with complete gene deletion. A recent study suggests that murine CD8+ cells that are haploinsufficient for Ikaros produce increased amounts of autocrine interleukin-2 when stimulated. \(^{29}\) This may explain the increased numbers of CD8+ cells, suggesting a relatively T-cell–specific dominant negative effect in patients with mutations resulting in stable proteins that fail to bind DNA.

Y210C, a different heterozygous de novo mutation in IKZF1, was reported in a premature infant with pancytopenia and complete loss of B cells and natural killer cells. \(^{21}\) The pathophysiological features and severity of the phenotype in this infant cannot be readily explained but may have been due to defects in functions of IKAROS that are unrelated to DNA binding or to additional genetic or nongenetic modifying factors. One of the more striking features of recently identified autosomal dominant genetic defects is the marked heterogeneity in phenotype caused by mutations in the same gene. In some instances, this heterogeneity results from the fact that different mutations in the same gene have very different effects on protein function. In other instances, modifying genetic factors, environmental or infectious exposures, or even the age at which environmental or infectious exposures occur may influence the clinical features. \(^{7}\)

S. pneumoniae is a common infectious organism in patients with hypogammaglobulinemia, poor antibody function, and low B-cell numbers; \(^{30}\) it also was common in our patients who had mutations in IKZF1. There was no evidence of increased susceptibility to viral or fungal infections in any of these patients. Thus, like other types of CVID, IKAROS deficiency should be viewed as a “predominantly antibody deficiency” on the basis of the International Union of Immunological Societies classification of primary immunodeficiency diseases. \(^{4}\)

There are several murine models of Ikaros deficiency. \(^{20,31-33}\) The most severe phenotype is associated with an amino acid substitution (H191R) in zinc finger 3 of the DNA-binding domain. \(^{20}\) Homozygosity for this mutation is lethal to the embryo because of anemia. Heterozygous mice have normal numbers of peripheral blood B cells but reduced numbers of B-cell precursors in the bone marrow. Heterozygous *Ikzf1* \(^{H191R}\) mice or *Ikzf1* \(^{del(ex3-ex6)}\) mice (mice with a mutation that deletes three of the N-terminal zinc fingers) have a high incidence of T-cell leukemia. \(^{20,34}\) In contrast, somatic loss-of-function and dominant negative mutations in *IKZF1* are predominantly associated with B-cell leukemias in humans. \(^{35-38}\) Furthermore, polymorphic variants in *IKZF1* that decrease the number of transcripts constitute a risk factor for both pediatric and adult B-cell ALL. \(^{39}\) In our study, typical childhood B-cell ALL developed in 2 of the 29 patients with germline heterozygous mutations in *IKZF1*. Thus, the penetrance for acquired hypogammaglobulinemia was higher than that for leukemia. This finding is compatible with data suggesting that mutations in *IKZF1* are not the initiating event in leukemias. \(^{38}\) Leukemias associated with somatic mutations in *IKZF1* lead to overexpression of hematopoietic stem-cell genes. \(^{37,40}\) Overexpression of stem-cell genes in patients with germline heterozygous mutations in *IKZF1* may result in stem-cell exhaustion (i.e., excessive proliferation of stem cells, resulting in premature senescence or anergy). This in turn could cause an acceleration of the normal decrease in B-cell production that occurs with age. \(^{41}\)

We speculate that the relatively mild clinical
phenotype in the patients with heterozygous mutations in IKZF1 may be due to the production of functional antibodies early in life, with the generation of some CD27+ memory B cells and the persistence of long-lived plasma cells in the bone marrow. The presence of these CD27+ memory B cells and plasma cells, in the context of very low numbers of peripheral-blood B cells, reversed CD4:CD8 ratios, and a family history compatible with autosomal dominant inheritance, distinguishes patients with IKAROS mutations from other patients with CVID.

The content of this article does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. government.

Supported in part by the Intramural Research Program of the National Institutes of Health (NIH) Clinical Center and the National Institute of Allergy and Infectious Diseases and by grants from the Gerber Kif Stiftung Program Rare Diseases — New Approaches (GRK-046;10), the European Union’s Seventh Framework Program for Research and Technological Development (EU-FP7 CELL-PID HEALTH-2010-621387 and EU-FP7 NET14CDG), the Zurich Center for Integrative Human Physiology, Gottfried und Julia Bangerter-Rhyner-Stiftung, and Fondazione Ettore e Valeria Rossi (all to Dr. Reichenbach); National Jewish Health; NIH (AI-101093, AI-086037, AI-48693, and T32-GM007280, to Dr. Cunningham-Rundles; AI-094004, to Drs. Voelkerding, Hill, and Kumánsová; AI-104857, to Dr. Conley; and AI-061093 and TR-000043, to Drs. Boisson and Casanová); the National Human Genome Research Institute (U54HG006542, to the Baylor–Hopkins Center for Mendelian Genomics); and Rockefeller University, INSRM, and Paris Descartes University (all to Dr. Casanová).

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank the patients and their families for their contributions to the study; Kimberley Lemberg, Joseph Monsale, Shukuntala Rampertaap, Jennifer Stoddard, Anahita Agharahimi, and Ashleigh Hussey for their technical and nursing assistance at the National Institutes of Health; Jeannette Rejali and Ashley Bunger for organizing and collecting the clinical samples at the University of Utah and ARUP Laboratories; Dr. Marko Radelic for help with confocal microscopy; Drs. Rodney Miles and Joshua Schiffman for help with the analysis of the leukemia samples from Patient F12; Drs. David Bahler, Sergey Preobrazhensky, and Tiffany J. Whitney for helping with flow cytometry; Dr. Jeremy P. Crim, Leslie Rowe, and Jack Stephens for help with array-based CGH, multiplex ligation-dependent probe amplification, and Sanger sequencing; Elliot Kramer for help with the Tdt studies; Pabudu Saneth Samarakoon and Robert Lyle for their assistance with the genetic testing in the Norwegian family; and Laurent Abel for his contribution to the penetrance studies.

APPENDIX

The authors’ full names and academic degrees are as follows: Hye Sun Kuehn, Ph.D., Bertrand Boisson, Ph.D., Charlotte Cunningham-Rundles, M.D., Ph.D., Janine Reichenbach, M.D., Ashleigh Stray-Pedersen, M.D., Ph.D., Erwin W. Gelfand, M.D., Patrick Mattucci, B.A., Keith B. Pierce, B.S., Jordan K. Abbott, M.D., Karl V. Voelkerding, M.D., Sarah T. South, Ph.D., Nancy H. Augustine, B.A., Jeanas S. Bush, M.D., William K. Dolen, M.D., Betty B. Wray, M.D., Yuval Itan, Ph.D., Aurelie Cobat, M.D., Ph.D., Hanne Sørmo Sorte, M.S., Sundar Ganesan, Ph.D., Seraina Prader, M.D., Thomas B. Martins, M.S., Monica G. Lawrence, M.D., Jordan S. Orange, M.D., Ph.D., Katherine R. Calvo, M.D., Ph.D., Julie E. Niemela, M.S., Jean-Laurent Casanova, M.D., Ph.D., Thomas A. Fleisher, M.D., Harry R. Hill, M.D., Atilla Kumánsová, M.D., Mary Ellen Conley, M.D., and Sergio D. Rosenzweig, M.D., Ph.D.

The authors’ affiliations are as follows: the Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.). National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockfeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) — all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children’s Hospital Zurich (J.R., S.P.), Children’s Research Center (J.R., S.P.), and University of Zurich (J.R.) — all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children’s Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor–Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) — both in Salt Lake City; the Division of Allergy–Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.).

REFERENCES

1. Chapel H, Cunningham-Rundles C. Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. Br J Haematol 2009;145: 709-27.
7. Conley ME, Casanova JL. Discovery of single-gene inborn errors of immunity by

Copyright © 2016 Massachusetts Medical Society.

ICMJ DATA SHARING REQUIREMENTS

The International Committee of Medical Journal Editors (icmje.org) is seeking feedback on its proposed requirements for clinical trial data sharing. Visit https://forms.acponline.org/webform/comments-icmje%E2%80%99s-proposals-sharing-clinical-trial-data before April 18 to comment.

Copyright © 2016 Massachusetts Medical Society. All rights reserved.

The New England Journal of Medicine

Downloaded from nejm.org at HAUPTBIBLIOTHEK UNIV ZUERICH on February 6, 2017. For personal use only. No other uses without permission. 2016 Massachusetts Medical Society. All rights reserved.

N ENGL J MED 374;11 NEJM.ORG MARCH 17, 2016 1043