UZH-Logo

Maintenance Infos

Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: Interaction of Hg species in erythrocytes


Halbach, S; Vogt, S; Köhler, W; Felgenhauer, N; Welzl, D; Kremers, L; Zilker, T; Melchart, D (2008). Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: Interaction of Hg species in erythrocytes. Environmental Research, 107(1):69-78.

Abstract

Parts of the population are permanently exposed to low levels of Hg degrees and Hg(II) from dental amalgam. It was the aim (1) to investigate the internal exposure to amalgam-related mercury from the kinetics of inorganic Hg in plasma and erythrocytes after amalgam removal, and (2) to estimate the amalgam-related absorbed dose. Dietary coexposure was monitored by determination of blood organic-Hg. Postremoval steady-state Hg concentrations were measured for 18 months. Eighty-two patients had been randomized into three groups: (A) removal of the fillings; (B) removal and non-specific detoxification, and (C) a health promotion program without removal. After amalgam removal, inorganic Hg dropped rapidly in plasma and red cells, stabilizing at 27% of preremoval levels after 60 days. Concentrations of organic Hg in plasma remained unchanged, indicating no change in dietary uptake of organic Hg. The concentration of organic Hg in red cells of group A was in the early postremoval phase lower and in the late postremoval phase higher than the preremoval control (p<0.01 for low-high difference). A protracted increase in organic Hg was also found in red cells of group B after 60 days. Thus, the effect of removal on organic Hg levels in the combined group A+B was compared with the values of group C in a linear mixed effects (LME) model which showed a significant increase with time in group A+B (p=0.028). In all groups, time profiles of urinary concentration and excretion of total-Hg were very similar to those of inorganic-Hg levels in plasma. From extrapolations of blood and urine data it was estimated that the amalgam-related inhalation and ingestion of Hg species were within the limits proposed by WHO, ATSDR and EPA. The integrated daily Hg dose absorbed from amalgam was estimated up to 3 microg for an average number of fillings and at 7.4 for a high amalgam load. CONCLUSIONS: This is the first study on adult amalgam patients which continuously monitored the postremoval decline of inorganic Hg and the coexposure from dietary organic Hg in a randomized-controlled-trial design. The integrated daily dose of 7.4 microg absorbed from a high amalgam load is well below the tolerable dose of 30 microg (WHO, 1990). The unexpected postremoval increase in erythrocyte organic Hg, which is associated with the depletion of cellular inorganic Hg, might result from binding of organic Hg to cellular sites previously occupied by inorganic Hg.

Abstract

Parts of the population are permanently exposed to low levels of Hg degrees and Hg(II) from dental amalgam. It was the aim (1) to investigate the internal exposure to amalgam-related mercury from the kinetics of inorganic Hg in plasma and erythrocytes after amalgam removal, and (2) to estimate the amalgam-related absorbed dose. Dietary coexposure was monitored by determination of blood organic-Hg. Postremoval steady-state Hg concentrations were measured for 18 months. Eighty-two patients had been randomized into three groups: (A) removal of the fillings; (B) removal and non-specific detoxification, and (C) a health promotion program without removal. After amalgam removal, inorganic Hg dropped rapidly in plasma and red cells, stabilizing at 27% of preremoval levels after 60 days. Concentrations of organic Hg in plasma remained unchanged, indicating no change in dietary uptake of organic Hg. The concentration of organic Hg in red cells of group A was in the early postremoval phase lower and in the late postremoval phase higher than the preremoval control (p<0.01 for low-high difference). A protracted increase in organic Hg was also found in red cells of group B after 60 days. Thus, the effect of removal on organic Hg levels in the combined group A+B was compared with the values of group C in a linear mixed effects (LME) model which showed a significant increase with time in group A+B (p=0.028). In all groups, time profiles of urinary concentration and excretion of total-Hg were very similar to those of inorganic-Hg levels in plasma. From extrapolations of blood and urine data it was estimated that the amalgam-related inhalation and ingestion of Hg species were within the limits proposed by WHO, ATSDR and EPA. The integrated daily Hg dose absorbed from amalgam was estimated up to 3 microg for an average number of fillings and at 7.4 for a high amalgam load. CONCLUSIONS: This is the first study on adult amalgam patients which continuously monitored the postremoval decline of inorganic Hg and the coexposure from dietary organic Hg in a randomized-controlled-trial design. The integrated daily dose of 7.4 microg absorbed from a high amalgam load is well below the tolerable dose of 30 microg (WHO, 1990). The unexpected postremoval increase in erythrocyte organic Hg, which is associated with the depletion of cellular inorganic Hg, might result from binding of organic Hg to cellular sites previously occupied by inorganic Hg.

Citations

19 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 16 Feb 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Complementary Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2008
Deposited On:16 Feb 2009 10:49
Last Modified:05 Apr 2016 13:01
Publisher:Elsevier
ISSN:0013-9351
Publisher DOI:https://doi.org/10.1016/j.envres.2007.07.005
PubMed ID:1776792

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations