Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-13996

Frelet-Barrand, A; Kolukisaoglu, H U; Plaza, S; Rüffer, M; Azevedo, L; Hörtensteiner, S; Marinova, K; Weder, B; Schulz, B; Klein, M (2008). Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant & Cell Physiology, 49(4):557-569.

Accepted Version
View at publisher


The enormous metabolic plasticity of plants allows detoxification of many harmful compounds that are generated during biosynthetic processes or are present as biotic or abiotic toxins in their environment. Derivatives of toxic compounds such as glutathione conjugates are moved into the central vacuole via ATP-binding cassette (ABC)-type transporters of the multidrug resistance-associated protein (MRP) subfamily. The Arabidopsis genome contains 15 AtMRP isogenes, four of which (AtMRP1, 2, 11 and 12) cluster together in one of two major phylogenetic clades. We isolated T-DNA knockout alleles in all four highly homologous AtMRP genes of this clade and subjected them to physiological analysis to assess the function of each AtMRP of this group. None of the single atmrp mutants displayed visible phenotypes under control conditions. In spite of the fact that AtMRP1 and AtMRP2 had been described as efficient ATP-dependent organic anion transporters in heterologous expression experiments, the contribution of three of the AtMRP genes (1, 11 and 12) to detoxification is marginal. Only knockouts in AtMRP2 exhibited a reduced sensitivity towards 1-chloro-2,4-dinitrobenzene, but not towards other herbicides. AtMRP2 but not AtMRP1, 11 and 12 is involved in chlorophyll degradation since ethylene-treated rosettes of atmrp2 showed reduced senescence, and AtMRP2 expression is induced during senescence. This suggests that AtMRP2 is involved in vacuolar transport of chlorophyll catabolites. Vacuolar uptake studies demonstrated that transport of typical MRP substrates was reduced in atmrp2. We conclude that within clade I, only AtMRP2 contributes significantly to overall organic anion pump activity in vivo.


31 citations in Web of Science®
30 citations in Scopus®
Google Scholar™



141 downloads since deposited on 21 Feb 2009
53 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Date:April 2008
Deposited On:21 Feb 2009 19:26
Last Modified:05 Apr 2016 13:01
Publisher:Oxford University Press
Additional Information:This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Plant & Cell Physiology following peer review. The definitive publisher-authenticated version "Comparative Mutant Analysis of Arabidopsis ABCC-Type ABC Transporters: AtMRP2 Contributes... Frelet-Barrand et al. Plant Cell Physiol..2008; 49: 557-569" is available online at: http://pcp.oxfordjournals.org/cgi/content/full/49/4/557
Publisher DOI:10.1093/pcp/pcn034
PubMed ID:18325934

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page