UZH-Logo

Maintenance Infos

Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter.


Köhler, K; Forster, I C; Stange, G; Biber, J; Murer, H (2002). Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. American Journal of Physiology: Renal Physiology, 282(4):F687-F696.

Abstract

Intrasequence comparison of the type IIa Na(+)-P(i) cotransport protein revealed two regions with high similarity in the first intracellular (ICL-1) and third extracellular (ECL-3) loops. Because the ECL-3 loop contains functionally important sites that have been identified by cysteine scanning, we applied this method to corresponding sites in the ICL-1 loop. The accessibility of novel cysteines by methanethiosulfonate reagents was assayed electrophysiologically. Mutants N199C and V202C were fully inhibited after methanethiosulfonate ethylammonium exposure, whereas other mutants showed marginal reductions in cotransport function. None showed significant functional loss after exposure to impermeant methanethiosulfonate ethyltrimethylammonium, which suggested a sidedness of Cys modification. Compared with the wild-type (WT), mutant A203C showed altered Na(+) leak kinetics, whereas N199C exhibited decreased apparent substrate affinities. To delineate the role of residue N199 in conferring substrate affinity, other mutations at this site were made. Only two mutants yielded significant (32)P(i) uptake and inward P(i)-induced currents with decreased P(i) affinity; for the others, P(i) application suppressed only the Na(+) leak. We suggest that ICL-1 and ECL-3 sites contribute to the transport pathway and that site N199 is implicated in defining the transport mode.

Intrasequence comparison of the type IIa Na(+)-P(i) cotransport protein revealed two regions with high similarity in the first intracellular (ICL-1) and third extracellular (ECL-3) loops. Because the ECL-3 loop contains functionally important sites that have been identified by cysteine scanning, we applied this method to corresponding sites in the ICL-1 loop. The accessibility of novel cysteines by methanethiosulfonate reagents was assayed electrophysiologically. Mutants N199C and V202C were fully inhibited after methanethiosulfonate ethylammonium exposure, whereas other mutants showed marginal reductions in cotransport function. None showed significant functional loss after exposure to impermeant methanethiosulfonate ethyltrimethylammonium, which suggested a sidedness of Cys modification. Compared with the wild-type (WT), mutant A203C showed altered Na(+) leak kinetics, whereas N199C exhibited decreased apparent substrate affinities. To delineate the role of residue N199 in conferring substrate affinity, other mutations at this site were made. Only two mutants yielded significant (32)P(i) uptake and inward P(i)-induced currents with decreased P(i) affinity; for the others, P(i) application suppressed only the Na(+) leak. We suggest that ICL-1 and ECL-3 sites contribute to the transport pathway and that site N199 is implicated in defining the transport mode.

Citations

35 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 April 2002
Deposited On:11 Feb 2008 12:23
Last Modified:05 Apr 2016 12:18
Publisher:American Physiological Society
ISSN:0002-9513
Publisher DOI:10.1152/ajprenal.00282.2001
PubMed ID:11880330

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations