UZH-Logo

Regulation of the renal type IIa Na/Pi cotransporter by cGMP.


Bacic, D; Hernando, N; Traebert, M; Lederer, E; Völkl, H; Biber, J; Kaissling, B; Murer, H (2001). Regulation of the renal type IIa Na/Pi cotransporter by cGMP. Pflügers Archiv: European Journal of Physiology (Pflugers Archiv), 443(2):306-313.

Abstract

Inhibition of proximal tubular phosphate (Pi) reabsorption involves, as far as we know, brush border membrane retrieval of the type IIa Na/Pi-cotransporter. The aim of the present study was to analyze whether intracellular cGMP-mediated regulation of Pi reabsorption also involves retrieval of the type IIa Na/Pi-cotransporter, as previously shown for cAMP. Atrial natriuretic peptide (ANP) and nitric oxide (NO) were used to stimulate guanylate cyclase. In vivo perfusion of mice kidneys with either ANP or NO donors resulted in a downregulation of type IIa Na/Pi-cotransporters on the brush border membranes of proximal tubules. These effects were mimicked by activation of protein kinase G with 8Br-cGMP. In in-vitro-perfused mice proximal tubules, ANP was effective when added either to the apical or basolateral perfusate, suggesting the presence of receptors on both membrane sites. The effects of ANP and NO were blocked by the protein kinase G inhibitor LY 83553. Parallel experiments in OK cells, a renal proximal tubule model, provided similar information. Our findings document that cGMP-mediated regulation (ANP and NO) of type IIa Na/Pi-cotransporters also takes place via internalization of the transporter protein.

Inhibition of proximal tubular phosphate (Pi) reabsorption involves, as far as we know, brush border membrane retrieval of the type IIa Na/Pi-cotransporter. The aim of the present study was to analyze whether intracellular cGMP-mediated regulation of Pi reabsorption also involves retrieval of the type IIa Na/Pi-cotransporter, as previously shown for cAMP. Atrial natriuretic peptide (ANP) and nitric oxide (NO) were used to stimulate guanylate cyclase. In vivo perfusion of mice kidneys with either ANP or NO donors resulted in a downregulation of type IIa Na/Pi-cotransporters on the brush border membranes of proximal tubules. These effects were mimicked by activation of protein kinase G with 8Br-cGMP. In in-vitro-perfused mice proximal tubules, ANP was effective when added either to the apical or basolateral perfusate, suggesting the presence of receptors on both membrane sites. The effects of ANP and NO were blocked by the protein kinase G inhibitor LY 83553. Parallel experiments in OK cells, a renal proximal tubule model, provided similar information. Our findings document that cGMP-mediated regulation (ANP and NO) of type IIa Na/Pi-cotransporters also takes place via internalization of the transporter protein.

Citations

27 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 November 2001
Deposited On:11 Feb 2008 12:23
Last Modified:05 Apr 2016 12:18
Publisher:Springer
ISSN:0031-6768
Publisher DOI:10.1007/s004240100695
PubMed ID:11713658

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations