UZH-Logo

Abnormal sulfate metabolism in vitamin D-deficient rats.


Fernandes, I; Hampson, G; Cahours, X; Morin, P; Coureau, C; Couette, S; Prie, D; Biber, J; Murer, H; Friedlander, G; Silve, C (1997). Abnormal sulfate metabolism in vitamin D-deficient rats. Journal of Clinical Investigation, 100(9):2196-2203.

Abstract

To explore the possibility that vitamin D status regulates sulfate homeostasis, plasma sulfate levels, renal sulfate excretion, and the expression of the renal Na-SO4 cotransporter were evaluated in vitamin D-deficient (D-D-) rats and in D-D- rats rendered normocalcemic by either vitamin D or calcium/lactose supplementation. D-D- rats had significantly lower plasma sulfate levels than control animals (0.93+/-0.01 and 1.15+/-0.05 mM, respectively, P < 0.05), and fractional sulfate renal excretion was approximately threefold higher comparing D-D- and control rats. A decrease in renal cortical brush border membrane Na-SO4 cotransport activity, associated with a parallel decrease in both renal Na-SO4 cotransport protein and mRNA content (78+/-3 and 73+/-3% decreases, respectively, compared with control values), was also observed in D-D- rats. Vitamin D supplementation resulted in a return to normal of plasma sulfate, fractional sulfate excretion, and both renal Na-SO4 cotransport mRNA and protein. In contrast, renal sulfate excretion and renal Na-SO4 cotransport activity, protein abundance, and mRNA remained decreased in vitamin D-depleted rats fed a diet supplemented with lactose and calcium, despite that these rats were normocalcemic, and had significantly lower levels of parathyroid hormone and 25(OH)- and 1,25(OH)2-vitamin D levels than the vitamin D-supplemented groups. These results demonstrate that vitamin D modulates renal Na-SO4 sulfate cotransport and sulfate homeostasis. The ability of vitamin D status to regulate Na-SO4 cotransport appears to be a direct effect, and is not mediated by the effects of vitamin D on plasma calcium or parathyroid hormone levels. Because sulfate is required for synthesis of essential matrix components, abnormal sulfate metabolism in vitamin D-deficient animals may contribute to producing some of the abnormalities observed in rickets and osteomalacia.

To explore the possibility that vitamin D status regulates sulfate homeostasis, plasma sulfate levels, renal sulfate excretion, and the expression of the renal Na-SO4 cotransporter were evaluated in vitamin D-deficient (D-D-) rats and in D-D- rats rendered normocalcemic by either vitamin D or calcium/lactose supplementation. D-D- rats had significantly lower plasma sulfate levels than control animals (0.93+/-0.01 and 1.15+/-0.05 mM, respectively, P < 0.05), and fractional sulfate renal excretion was approximately threefold higher comparing D-D- and control rats. A decrease in renal cortical brush border membrane Na-SO4 cotransport activity, associated with a parallel decrease in both renal Na-SO4 cotransport protein and mRNA content (78+/-3 and 73+/-3% decreases, respectively, compared with control values), was also observed in D-D- rats. Vitamin D supplementation resulted in a return to normal of plasma sulfate, fractional sulfate excretion, and both renal Na-SO4 cotransport mRNA and protein. In contrast, renal sulfate excretion and renal Na-SO4 cotransport activity, protein abundance, and mRNA remained decreased in vitamin D-depleted rats fed a diet supplemented with lactose and calcium, despite that these rats were normocalcemic, and had significantly lower levels of parathyroid hormone and 25(OH)- and 1,25(OH)2-vitamin D levels than the vitamin D-supplemented groups. These results demonstrate that vitamin D modulates renal Na-SO4 sulfate cotransport and sulfate homeostasis. The ability of vitamin D status to regulate Na-SO4 cotransport appears to be a direct effect, and is not mediated by the effects of vitamin D on plasma calcium or parathyroid hormone levels. Because sulfate is required for synthesis of essential matrix components, abnormal sulfate metabolism in vitamin D-deficient animals may contribute to producing some of the abnormalities observed in rickets and osteomalacia.

Citations

47 citations in Web of Science®
45 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

99 downloads since deposited on 11 Feb 2008
34 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 November 1997
Deposited On:11 Feb 2008 12:23
Last Modified:05 Apr 2016 12:18
Publisher:American Society for Clinical Investigation
ISSN:0021-9738
Publisher DOI:10.1172/JCI119756
Related URLs:http://www.jci.org/cgi/content/full/100/9/2196
PubMed ID:9410896
Permanent URL: http://doi.org/10.5167/uzh-1410

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 299kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations